ﻻ يوجد ملخص باللغة العربية
Plastic deformation of crystals is a physical phenomenon, which has immensely driven the development of human civilisation since the onset of the Chalcolithic period. This process is primarily governed by the motion of line defects, called dislocations. Each dislocation traps a quantum of plastic deformation expressible in terms of its Burgers vector[1,2]. Theorising the mechanisms of dislocation motion at the atomistic scales of length and time remains a challenging task on account of the extreme complexities associated with the dynamics. We present a new concept of modelling a moving dislocation as the dynamic distribution of the elastic field singularity within the span of the Burgers vector. Surprisingly, numerical implementation of this model for the periodic expansion-shrinkage cycle of the singularity is found to exhibit an energetics, which resembles that of a dislocation moving in the presence of the Peierls barrier[1-4]. The singularity distribution is shown to be the natural consequence under the external shear stress. Moreover, in contrast to the conventional assumption, here the calculations reveal a significant contribution of the linear elastic region surrounding the core towards the potential barrier.
This paper has been withdrawn.
In this letter we propose a model that demonstrates the effect of free surface on the lattice resistance experienced by a moving dislocation in nanodimensional systems. This effect manifests in an enhanced velocity of dislocation due to the proximity
The propagation of a head-to-head magnetic domain-wall (DW) or a tail-to-tail DW in a magnetic nanowire under a static field along the wire axis is studied. Relationship between the DW velocity and DW structure is obtained from the energy considerati
Using _in situ_ transmission electron microscopy (TEM), we have observed nanometre scale dislocation loops formed when an ultra-high-purity tungsten foil is irradiated with a very low fluence of self-ions. Analysis of the TEM images has revealed the
Magnetoresistive (xMR) sensors find extensive application in science and industry, replacing Hall sensors in various low field environments. While there have been some efforts in increasing the dynamic field range of xMR sensors, Hall sensors remain