ترغب بنشر مسار تعليمي؟ اضغط هنا

Current quark mass dependence of nucleon magnetic moments and radii

125   0   0.0 ( 0 )
 نشر من قبل Craig Roberts
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A calculation of the current-quark-mass-dependence of nucleon static electromagnetic properties is necessary in order to use observational data as a means to place constraints on the variation of Natures fundamental parameters. A Poincare covariant Faddeev equation, which describes baryons as composites of confined-quarks and -nonpointlike-diquarks, is used to calculate this dependence The results indicate that, like observables dependent on the nucleons magnetic moments, quantities sensitive to their magnetic and charge radii, such as the energy levels and transition frequencies in Hydrogen and Deuterium, might also provide a tool with which to place limits on the allowed variation in Natures constants.



قيم البحث

اقرأ أيضاً

We present benchmark calculations of Zemach moments and radii of 2,3H and 3,4He using various few-body methods. Zemach moments are required to interpret muonic atom data measured by the CREMA collaboration at the Paul Scherrer Institute. Conversely, radii extracted from spectroscopic measurements can be compared with ab initio computations, posing stringent constraints on the nuclear model. For a given few-body method, different numerical procedures can be applied to compute these quantities. A detailed analysis of the numerical uncertainties entering the total theoretical error is presented. Uncertainties from the few-body method and the calculational procedure are found to be smaller than the dependencies on the dynamical modeling and the single nucleon inputs, which are found to be <= 2%. When relativistic corrections and two-body currents are accounted for, the calculated moments and radii are in very good agreement with the available experimental data.
We report quantum Monte Carlo calculations of single-$Lambda$ hypernuclei for $A<50$ based on phenomenological two- and three-body hyperon-nucleon forces. We present results for the $Lambda$ separation energy in different hyperon orbits, showing that the accuracy of theoretical predictions exceeds that of currently available experimental data, especially for medium-mass hypernuclei. We show the results of a sensitivity study that indicates the possibility to investigate the nucleon-isospin dependence of the three-body hyperon-nucleon-nucleon force in the medium-mass region of the hypernuclear chart, where new spectroscopy studies are currently planned. The importance of such a dependence for the description of the physics of hypernuclei, and the consequences for the prediction of neutron star properties are discussed.
We present an updated analysis of the quark mass dependence of the nucleon mass and nucleon axial-vector coupling g_A, comparing different formulations of SU(2) Baryon Chiral Effective Field Theory, with and without explicit delta (1232) degrees of f reedom. We discuss the outcome of the corresponding interpolations between lattice QCD data and the physical values for these two nucleon observables. It turns out that in order to obtain successful interpolating functions at one-loop order, the inclusion of explicit delta (1232) degrees of freedom is not decisive for the nucleon mass but crucial for g_A. A chiral extrapolation of recent lattice results by the LHP collaborations is also shown.
101 - Omar Benhar 2019
The scale-dependence of the nucleon-nucleon interaction, which in recent years has been extensively analysed within the context of chiral effective field theory, is, in fact, inherent in any potential models constrained by a fit to scattering data. A comparison between a purely phenomenological potential and local interactions derived from chiral effective field theory suggests that--thanks to the ability to describe nucleon-nucleon scattering at higher energies, as well as the deuteron momentum distribution extracted from electro-disintegration data--phenomenological potentials are best suited for the description of nuclear dynamics at the scale relevant to neutron star matter.
A nonzero electric dipole moment (EDM) of the neutron, proton, deuteron or helion, in fact, of any finite system necessarily involves the breaking of a symmetry, either by the presence of external fields (i.e. electric fields leading to the case of i nduced EDMs) or explicitly by the breaking of the discrete parity and time-reflection symmetries in the case of permanent EDMs. We discuss two theorems describing these phenomena and report about the cosmological motivation for an existence of CP breaking beyond what is generated by the Kobayashi-Maskawa mechanism in the Standard Model and what this might imply for the permanent electric dipole moments of the nucleon and light nuclei by estimating a window of opportunity for physics beyond what is currently known. Recent - and in the case of the deuteron even unpublished - results for the relevant matrix elements of nuclear EDM operators are presented and the relevance for disentangling underlying New Physics sources are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا