ﻻ يوجد ملخص باللغة العربية
The formalism for exactly calculating the retarded and advanced Greens functions of strongly correlated lattice models in a uniform electric field is derived within dynamical mean-field theory. To illustrate the method, we solve for the nonequilibrium density of states of the Hubbard model in both the metallic and Mott insulating phases at half-filling (with an arbitrary strength electric field) by employing the numerical renormalization group as the impurity solver. This general approach can be applied to any strongly correlated lattice model in the limit of large dimensions.
A numerical approach is presented that allows to compute nonequilibrium steady state properties of strongly correlated quantum many-body systems. The method is imbedded in the Keldysh Greens function formalism and is based upon the idea of the variat
We present a systematic study of the nonequilibrium steady states (NESS) in Mott insulators driven by DC or AC electric fields, based on the Floquet dynamical mean-field theory. The results are analyzed using a generalized tunneling formula for the c
We present a robust scheme to derive effective models non-perturbatively for quantum lattice models when at least one degree of freedom is gapped. A combination of graph theory and the method of continuous unitary transformations (gCUTs) is shown to
We have proposed a novel numerical method to calculate accurately the physical quantities of the ground state with the tensor-network wave function in two dimensions. We determine the tensor network wavefunction by a projection approach which applies
We present an exact solution of an experimentally realizable and strongly interacting one-dimensional spin system which is a limiting case of a quantum Ising model with long range interaction in a transverse and longitudinal field. Pronounced quantum