ﻻ يوجد ملخص باللغة العربية
We present an exact solution of an experimentally realizable and strongly interacting one-dimensional spin system which is a limiting case of a quantum Ising model with long range interaction in a transverse and longitudinal field. Pronounced quantum fluctuations lead to a strongly correlated liquid ground state. For open boundary conditions the ground state manifold consists of four degenerate sectors whose quantum numbers are determined by the orientation of the edge spins. Explicit expressions for the entanglement properties, the excitation gap as well as the exact wave functions for a couple of excited states are analytically derived and discussed.
We construct a new spin-1 model on a chain. Its ground state is determined exactly which is three-fold degenerate by breaking translational invariance. Thus we have trimerization. Excited states cannot be obtained exactly, but we determine a few low-
The physical properties of the semiconductor FeSi with very narrow band gap, anomalous behavior of the magnetic susceptibility and metal-insulator transition at elevated temperatures attract gross interest due to the still controversial theoretical u
One-dimensional lattice model of SU(2)_{4} anyons containing a transition into the topological ordered phase state is considered. An effective low-energy Hamiltonian is found for half-integer and integer indices of the type of strongly correlated non
We apply Coupled Cluster Method to a strongly correlated lattice and develop the Spectral Coupled Cluster equations by finding an approximation to the resolvent operator, that gives the spectral response for an certain class of probe operators. We ap
We report results of our study of a newly synthesized honeycomb iridate NaxIrO3 (0.60 < x < 0.80). Single-crystal NaxIrO3 adopts a honeycomb lattice noticeably without distortions and stacking disorder inherently existent in its sister compound Na2Ir