ﻻ يوجد ملخص باللغة العربية
The enigmatic object HD 45166 is a qWR star in a binary system with an orbital period of 1.596 day, and presents a rich emission-line spectrum in addition to absorption lines from the companion star (B7 V). As the system inclination is very small (i=0.77 +- 0.09 deg), HD 45166 is an ideal laboratory for wind-structure studies. The goal of the present paper is to determine the fundamental stellar and wind parameters of the qWR star. A radiative transfer model for the wind and photosphere of the qWR star was calculated using the non-LTE code CMFGEN. The wind asymmetry was also analyzed using a recently-developed version of CMFGEN to compute the emerging spectrum in two-dimensional geometry. The temporal-variance spectrum (TVS) was calculated for studying the line-profile variations. Abundances, stellar and wind parameters of the qWR star were obtained. The qWR star has an effective temperature of Teff=50000 +- 2000 K, a luminosity of log(L/Lsun)=3.75 +- 0.08, and a corresponding photospheric radius of Rphot=1.00 Rsun. The star is helium-rich (N(H)/N(He) = 2.0), while the CNO abundances are anomalous when compared either to solar values, to planetary nebulae, or to WR stars. The mass-loss rate is Mdot = 2.2 . 10^{-7} Msun/yr, and the wind terminal velocity is vinf=425 km/s. The comparison between the observed line profiles and models computed under different latitude-dependent wind densities strongly suggests the presence of an oblate wind density enhancement, with a density contrast of at least 8:1 from equator to pole. If a high velocity polar wind is present (~1200 km/s), the minimum density contrast is reduced to 4:1. The wind parameters determined are unusual when compared to O-type stars or to typical WR stars. (abridged)
We present a 3D numerical simulation of the recently discovered cometary structure produced as Mira travels through the galactic ISM. In our simulation, we consider that Mira ejects a steady, latitude-dependent wind, which interacts with a homogeneou
The development of infrared observational facilities has revealed a number of massive stars in obscured environments throughout the Milky Way and beyond. The determination of their stellar and wind properties from infrared diagnostics is thus require
Stellar models applied to large stellar surveys of the Milky Way need to be properly tested against a sample of stars with highly reliable fundamental stellar parameters. We have established a program aiming to deliver such a sample. We present new f
We analyze spatially resolved spectroscopic observations of the Eta Carinae binary system obtained with HST/STIS. Eta Car is enshrouded by the dusty Homunculus nebula, which scatters light emitted by the central binary and provides a unique opportuni
Physical processes working in the stellar interiors as well as the evolution of stars depend on some fundamental stellar properties, such as mass, radius, luminosity, and chemical abundances. A classical way to test stellar interior models is to comp