ﻻ يوجد ملخص باللغة العربية
We present a 3D numerical simulation of the recently discovered cometary structure produced as Mira travels through the galactic ISM. In our simulation, we consider that Mira ejects a steady, latitude-dependent wind, which interacts with a homogeneous, streaming environment. The axisymmetry of the problem is broken by the lack of alignment between the direction of the relative motion of the environment and the polar axis of the latitude-dependent wind. With this model, we are able to produce a cometary head with a ``double bow shock which agrees well with the structure of the head of Miras comet. We therefore conclude that a time-dependence in the ejected wind is not required for reproducing the observed double bow shock.
We model the cometary structure around Mira as the interaction of an AGB wind from Mira A, and a streaming environment. Our simulations introduce the following new element: we assume that after 200 kyr of evolution in a dense environment Mira entered
Herschels PACS instrument observed the environment of the binary system Mira Ceti in the 70 and 160 micron bands. These images reveal bright structures shaped as five broken arcs and fainter filaments in the ejected material of Miras primary star. Th
Solar wind charge-changing reactions are of paramount importance to the physico-chemistry of the atmosphere of a comet because they mass-load the solar wind through an effective conversion of fast, light solar wind ions into slow, heavy cometary ions
We analyze spatially resolved spectroscopic observations of the Eta Carinae binary system obtained with HST/STIS. Eta Car is enshrouded by the dusty Homunculus nebula, which scatters light emitted by the central binary and provides a unique opportuni
The enigmatic object HD 45166 is a qWR star in a binary system with an orbital period of 1.596 day, and presents a rich emission-line spectrum in addition to absorption lines from the companion star (B7 V). As the system inclination is very small (i=