ﻻ يوجد ملخص باللغة العربية
The development of infrared observational facilities has revealed a number of massive stars in obscured environments throughout the Milky Way and beyond. The determination of their stellar and wind properties from infrared diagnostics is thus required to take full advantage of the wealth of observations available in the near and mid infrared. However, the task is challenging. This session addressed some of the problems encountered and showed the limitations and successes of infrared studies of massive stars.
The last part of SpS5 dealt with the circumstellar environment. Structures are indeed found around several types of massive stars, such as blue and red supergiants, as well as WRs and LBVs. As shown in the last years, the potential of IR for their st
Angular momentum (AM) is a key parameter to understand galaxy formation and evolution. AM originates in tidal torques between proto-structures at turn around, and from this the specific AM is expected to scale as a power-law of slope 2/3 with mass. H
Stellar winds govern the angular momentum evolution of solar-like stars throughout their main-sequence lifetime. The efficiency of this process depends on the geometry of the stars magnetic field. There has been a rapid increase recently in the numbe
High-mass X-ray binaries (HMXBs) are exceptional astrophysical laboratories that offer a rare glimpse into the physical processes that govern accretion on compact objects, massive-star winds, and stellar evolution. In a subset of the HMXBs, the compa
In this work, we simulate the evolution of the solar wind along its main sequence lifetime and compute its thermal radio emission. To study the evolution of the solar wind, we use a sample of solar mass stars at different ages. All these stars have o