ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining theories of low-scale quantum gravity by non-observation of the bulk vector boson signal from the Sun

63   0   0.0 ( 0 )
 نشر من قبل Dalibor Kekez
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this experiment we aim to detect Kaluza-Klein (KK) excitations of the bulk gauge field, emitted in a bremsstrahlung process on solar plasma constituents, by looking at a process analogous to the photoelectric effect inside the HPGe detector. Using a generic feature of the underlying effective theory that the unknown 4-dimensional gauge coupling is independent of the number of extra large dimensions delta, we show that the expected number of events in the detector is insensitive to the true scale of quantum gravity for delta=2. With the entire data collection time of 202 days in the energy interval 1.7 - 3.8 keV, the number of events detected was as low as 1.1x10^6, compared to 2.7x10^6 from the expected high multiplicity of the solar KK excitations for delta =2. Hence, our bound from the presumed existence of new forces associated with additional gauge bosons actually conforms with very stringent bounds set from various astrophysical considerations. Baring any modifications of the infrared part of the KK spectrum, this bound would therefore rule out the possibility of observing any signal at the LHC for delta=2. Although a dependence on the fundamental scale referring to 4+delta-dimensional gravity turns on again for delta=3, the experimental sensitivity of the present setup proves insufficient to draw any constraint for delta>2.


قيم البحث

اقرأ أيضاً

In models with the fundamental gravity scale in the TeV range, early cosmology is quite different from the standard picture, because the universe must have arisen at a much lower temperature and the electroweak symmetry was probably never restored. I n this context, baryogenesis appears to be problematic: if the involved physics is essentially that of the Standard Model, ``conventional non-conserving baryon number processes are completely negligible at such low temperatures. In this paper we show that the observed matter-antimatter asymmetry of the universe may be generated by gravitational decay of TeV-mass particles: such objects can be out of equilibrium after inflation and, if their mass is of the same order of magnitude as the true quantum gravity scale, they can quickly decay through a black hole intermediate state, violating global symmetries, in particular, baryon number. In this context, we take advantage of the fact that the ``Sakharov conditions for baryogenesis can be more easily satisfied with a low fundamental scale of gravity.
In this work, we use a recast of the Run II search for invisible Higgs decays within Vector Boson Fusion to constrain the parameter space of the Inert Doublet model, a two Higgs doublet model with a dark matter candidate. When including all known the oretical as well as collider constraints, we find that the above can rule out a relatively large part in the mH-lambda345 parameter space, for dark scalar masses mH <= 100 GeV. Including the latest dark matter constraints, a smaller part of parameter space remains which is solely excluded from the above analysis. We also discuss the sensitivity of monojet searches and multilepton final states from Run II.
The debate on gravity theories to extend or modify General Relativity is very active today because of the issues related to ultra-violet and infra-red behavior of Einsteins theory. In the first case, we have to address the Quantum Gravity problem. In the latter, dark matter and dark energy, governing the large scale structure and the cosmological evolution, seem to escape from any final fundamental theory and detection. The state of art is that, up to now, no final theory, capable of explaining gravitational interaction at any scale, has been formulated. In this perspective, many research efforts are devoted to test theories of gravity by space-based experiments. Here we propose straightforward tests by the GINGER experiment, which, being Earth based, requires little modeling of external perturbation, allowing a thorough analysis of the systematics, crucial for experiments where sensitivity breakthrough is required. Specifically, we want to show that it is possible to constrain parameters of gravity theories, like scalar-tensor or Horava-Lifshitz gravity, by considering their post-Newtonian limits matched with experimental data. In particular, we use the Lense-Thirring measurements provided by GINGER to find out relations among the parameters of theories and finally compare the results with those provided by LARES and Gravity Probe-B satellites.
85 - Emilio Bellini ICC 2015
The scale of Baryon Acoustic Oscillations (BAO) imprinted in the matter power spectrum provides an almost-perfect standard ruler: it only suffers sub-percent deviations from fixed comoving length due to non-linear effects. We study the BAO shift in t he large Horndeski class of gravitational theories and compute its magnitude in momentum space using second-order perturbation theory and a peak-background split. The standard prediction is affected by the modified linear growth, as well as by non-linear gravitational effects that alter the mode-coupling kernel. For covariant Galileon models, we find a $14-45%$ enhancement of the BAO shift with respect to standard gravity and a distinct time evolution depending on the parameters. Despite the larger values, the shift remains well below the forecasted precision of next-generation galaxy surveys. Models that produce significant BAO shift would cause large redshift-space distortions or affect the bispectrum considerably. Our computation therefore validates the use of the BAO scale as a comoving standard ruler for tests of general dark energy models.
The data taken in Run II at the LHC have started to probe Higgs boson production at high transverse momentum. Future data will provide a large sample of events with boosted Higgs boson topologies, allowing for a detailed understanding of electroweak Higgs boson plus two-jet production, and in particular the vector-boson fusion mode (VBF). We perform a detailed comparison of precision calculations for Higgs boson production in this channel, with particular emphasis on large Higgs boson transverse momenta, and on the jet radius dependence of the cross section. We study fixed-order predictions at NLO and NNLO QCD, and compare the results to NLO plus parton shower (NLOPS) matched calculations. The impact of the NNLO corrections on the central predictions is mild, with inclusive scale uncertainties of the order of a few percent, which can increase with the imposition of kinematic cuts. We find good agreement between the fixed-order and matched calculations in non-Sudakov regions, and the various NLOPS predictions also agree well in the Sudakov regime. We analyze backgrounds to VBF Higgs boson production stemming from associated production, and from gluon-gluon fusion. At high Higgs boson transverse momenta, the $Delta y_{jj}$ and/or $m_{jj}$ cuts typically used to enhance the VBF signal over background lead to a reduced efficiency. We examine this effect as a function of the jet radius and using different definitions of the tagging jets. QCD radiative corrections increase for all Higgs production modes with increasing Higgs boson $p_T$, but the proportionately larger increase in the gluon fusion channel results in a decrease of the gluon-gluon fusion background to electroweak Higgs plus two jet production upon requiring exclusive two-jet topologies. We study this effect in detail and contrast in particular a central jet veto with a global jet multiplicity requirement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا