ترغب بنشر مسار تعليمي؟ اضغط هنا

Baryogenesis from Gravitational Decay of TeV-Particles in Theories with Low Scale Gravity

44   0   0.0 ( 0 )
 نشر من قبل Cosimo Bambi
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In models with the fundamental gravity scale in the TeV range, early cosmology is quite different from the standard picture, because the universe must have arisen at a much lower temperature and the electroweak symmetry was probably never restored. In this context, baryogenesis appears to be problematic: if the involved physics is essentially that of the Standard Model, ``conventional non-conserving baryon number processes are completely negligible at such low temperatures. In this paper we show that the observed matter-antimatter asymmetry of the universe may be generated by gravitational decay of TeV-mass particles: such objects can be out of equilibrium after inflation and, if their mass is of the same order of magnitude as the true quantum gravity scale, they can quickly decay through a black hole intermediate state, violating global symmetries, in particular, baryon number. In this context, we take advantage of the fact that the ``Sakharov conditions for baryogenesis can be more easily satisfied with a low fundamental scale of gravity.

قيم البحث

اقرأ أيضاً

A very simple way to obtain comparable baryon and DM densities in the early Universe is through their contemporary production from the out-of-equilibrium decay of a mother particle, if both populations are suppressed by comparably small numbers, i.e. the CP violation in the decay and the branching fraction respectively. We present a detailed study of this kind of scenario in the context of a R-parity violating realization of the MSSM in which the baryon asymmetry and the gravitino Dark Matter are produced by the decay of a Bino. The implementation of this simple picture in a realistic particle framework results, however, quite involving, due to the non trivial determination of the abundance of the decaying Bino, as well as due to the impact of wash-out processes and of additional sources both for the baryon asymmetry and the DM relic density. In order to achieve a quantitative determination of the baryon and Dark Matter abundances, we have implemented and solved a system of coupled Boltzmann equations for the particle species involved in their generation, including all the relevant processes. In the most simple, but still general, limit, in which the processes determining the abundance and the decay rate of the Bino are mediated by degenerate right-handed squarks, the correct values of the DM and baryon relic densities are achieved for a Bino mass between 50 and 100 TeV, Gluino NLSP mass in the range 15-60 TeV and a gravitino mass between 100 GeV and few TeV. These high masses are unfortunately beyond the kinematical reach of LHC. On the contrary, an antiproton signal from the decays of the gravitino LSP might be within the sensitivity of AMS-02 and gamma-ray telescopes.
In TeV scale unification models, gravity propagates in 4+d dimensions while gauge and matter fields are confined to a four dimensional brane, with gravity becoming strong at the TeV scale. For a such scenario, we study strong gravitational interactio ns in a effective Schwarzschild geometry. Two regimes appear. For large impact parameters, the ratio rho=(Rs/ro)1+d, (with Rs the Schwarzschild radius and ro the closest approach to the black hole), is small and the deflection angle is proportional to rho (like Rutherford-type scattering).For small impact parameters, the deflection angle develops a logarithmic singularity and becomes infinite for rho=rho crit= 2/(3+d). This singularity is reflected into a strong enhancement of the backward scattering (like a glory-type effect). We suggest a distinctive signature of black hole formation in particle collisions at TeV energies, the observation of the backward scattering events and its associated diffractive effects.
Interactions that manifest themselves as lepton number violating processes at low energies in combination with sphaleron transitions typically erase any preexisting baryon asymmetry of the Universe. In this article, we discuss the constraints obtaine d from an observation of neutrinoless double beta decay in this context. If a new physics mechanism of neutrinoless double beta decay other than the standard light neutrino exchange is observed, typical scenarios of high-scale baryogenesis will be excluded unless the baryon asymmetry is stabilized via some new mechanism. We also sketch how this conclusion can be extended beyond the first lepton generation by incorporating lepton flavor violating processes.
47 - R. Horvat , D. Kekez , Z. Krecak 2008
In this experiment we aim to detect Kaluza-Klein (KK) excitations of the bulk gauge field, emitted in a bremsstrahlung process on solar plasma constituents, by looking at a process analogous to the photoelectric effect inside the HPGe detector. Using a generic feature of the underlying effective theory that the unknown 4-dimensional gauge coupling is independent of the number of extra large dimensions delta, we show that the expected number of events in the detector is insensitive to the true scale of quantum gravity for delta=2. With the entire data collection time of 202 days in the energy interval 1.7 - 3.8 keV, the number of events detected was as low as 1.1x10^6, compared to 2.7x10^6 from the expected high multiplicity of the solar KK excitations for delta =2. Hence, our bound from the presumed existence of new forces associated with additional gauge bosons actually conforms with very stringent bounds set from various astrophysical considerations. Baring any modifications of the infrared part of the KK spectrum, this bound would therefore rule out the possibility of observing any signal at the LHC for delta=2. Although a dependence on the fundamental scale referring to 4+delta-dimensional gravity turns on again for delta=3, the experimental sensitivity of the present setup proves insufficient to draw any constraint for delta>2.
A modest extension of the Standard Model by two additional Higgs doublets - the Higgs Troika Model - can provide a well-motivated scenario for successful baryogenesis if neutrinos are Dirac fermions. Adapting the Spontaneous Flavor Violation framewor k, we consider a version of the Troika model where light quarks have significant couplings to the new multi-TeV Higgs states. Resonant production of new scalars leading to di-jet or top-pair signals are typical predictions of this setup. The initial and final state quarks relevant to the collider phenomenology also play a key role in baryogenesis, potentially providing direct access to the relevant early Universe physics in high energy experiments. Viable baryogenesis generally prefers some hierarchy of masses between the observed and the postulated Higgs states. We show that there is a complementarity between direct searches at a future 100 TeV $pp$ collider and indirect searches at flavor experiments, with both sensitive to different regions of parameter space relevant for baryogenesis. In particular, measurements of $D-bar{D}$ mixing at LHCb probe much of the interesting parameter space. Direct and indirect searches can uncover the new Higgs states up to masses of $mathcal{O}(10)$ TeV, thereby providing an impressive reach to investigate this model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا