ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the Inert Doublet Model using Vector Boson Fusion

196   0   0.0 ( 0 )
 نشر من قبل Tania Robens
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we use a recast of the Run II search for invisible Higgs decays within Vector Boson Fusion to constrain the parameter space of the Inert Doublet model, a two Higgs doublet model with a dark matter candidate. When including all known theoretical as well as collider constraints, we find that the above can rule out a relatively large part in the mH-lambda345 parameter space, for dark scalar masses mH <= 100 GeV. Including the latest dark matter constraints, a smaller part of parameter space remains which is solely excluded from the above analysis. We also discuss the sensitivity of monojet searches and multilepton final states from Run II.

قيم البحث

اقرأ أيضاً

267 - S.Asai , G.Azuelos , C.Buttar 2004
The potential for the discovery of a Standard Model Higgs boson in the mass range m_H < 2 m_Z in the vector boson fusion mode has been studied for the ATLAS experiment at the LHC. The characteristic signatures of additional jets in the forward region s of the detector and of low jet activity in the central region allow for an efficient background rejection. Analyses for the H -> WW and H -> tau tau decay modes have been performed using a realistic simulation of the expected detector performance. The results obtained demonstrate the large discovery potential in the H -> WW decay channel and the sensitivity to Higgs boson decays into tau-pairs in the low-mass region around 120 GeV.
The inert doublet model, a minimal extension of the Standard Model by a second higgs doublet with no direct couplings to quarks or leptons, is one of the simplest scenarios that can explain the dark matter. In this paper, we study in detail the impac t of dark matter annihilation into three-body final state on the phenomenology of the inert doublet model. We find that this new annihilation mode dominates, in a relevant portion of the parameter space, over those into two-body final states considered in previous analysis. As a result, the computation of the relic density is modified and the viable regions of the model are displaced. After obtaining the genuine viable regions for different sets of parameters, we compute the direct detection cross section of inert higgs dark matter and find it to be up to two orders of magnitude smaller than what is obtained for two-body final states only. Other implications of these results, including the modification to the decay width of the higgs and to the indirect detection signatures of inert higgs dark matter, are also briefly considered. We demonstrate, therefore, that the annihilation into three-body final state can not be neglected, as it has a important impact on the entire phenomenology of the inert doublet model.
We discuss the status of the Inert Doublet Model, a two-Higgs doublet model that obeys a discrete Z2 symmetry and provides a dark matter candidate. We discuss all current theoretical and experimental constraints on the model as well as discovery prospects at current and future colliders.
We present benchmarks for the Inert Doublet Model, a Two Higgs Doublet Model with a dark matter candidate. They are consistent with current constraints on direct detection, including the most recent bounds from the XENON1T experiment and relic densit y of dark matter, as well as with known collider and low-energy limits. We focus on parameter choices that promise detectable signals at lepton colliders via pair-production of H+H- and HA. For these we choose a large variety of benchmark points with different kinematic features, leading to distinctly different final states in order to cover the large variety of collider signatures that can result from the model.
Motivated by the recent result reported from LHC on the di-photon search for a Standard Model (SM) Higgs-like boson. We discuss the implications of this possible signal in the framework of the Inert Higgs Doublet Model (IHDM), taking into account pre vious limits from Higgs searches at LEP, the Tevatron and the LHC as well as constraints from unitarity, vacuum stability and electroweak precision tests. We show that the charged Higgs contributions can interfere constructively or destructively with the W gauge bosons loops leading to enhancement or suppression of the di-photon rate with respect to SM rate. We show also that the invisible decay of the Higgs, if open, could affect the total width of the SM Higgs boson and therefore suppress the di-photon rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا