ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-thermal emission from relativistic MHD simulations of PWNe: from synchrotron to inverse Compton

115   0   0.0 ( 0 )
 نشر من قبل Delia Volpi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Volpi




اسأل ChatGPT حول البحث

In this paper we complete the set of diagnostic tools for synchrotron emitting sources presented by Del Zanna et al. (Astron. Astrophys. 453, 621, 2006) with the computation of inverse Compton radiation from the same relativistic particles. Moreover we investigate, for the first time, the gamma-ray emission properties of Pulsar Wind Nebulae in the light of the axisymmetric jet-torus scenario. The method consists in evolving the relativistic MHD equations and the maximum energy of the emitting particles. The particle energy distribution function is split in two components: the radio one connected to a relic population born at the outburst of the supernova and the other associated to the wind population continuously accelerated at the termination shock and emitting up to the gamma-ray band. We consider the general Klein-Nishina cross section and three different photon targets: the nebular synchrotron photons, far-infrared thermal ones and the cosmic microwave background. The overall synchrotron spectrum is fitted assuming an excess of injected particles and a steeper power law with respect to previous models. The TeV emission has the correct shape but is in excess of the data. This is due to the nebular magnetic field structure as obtained by the simulations. The jet-torus morphology is visible in high-resolution gamma-ray synthetic maps too. We present a preliminary exploration of time variability in the X and gamma-ray bands.



قيم البحث

اقرأ أيضاً

221 - Delia Volpi 2007
We present a complete set of diagnostic tools aimed at reproducing synthetic non-thermal (synchrotron and/or Inverse Compton, IC) emissivity, integrated flux energy, polarization and spectral index simulated maps in comparison to observations. The ti me dependent relativistic magnetohydrodynamic (RMHD) equations are solved with a shock capturing code together with the evolution of the maximum particles energy. Applications to Pulsar Wind Nebulae (PWNe) are shown.
116 - D. Khangulyan , V. Bosch-Ramon , 2018
The gamma-ray emission detected from several microquasars can be produced by relativistic electrons emitting through inverse Compton scattering. In particular, the GeV emission detected from Cygnus X-3, and its orbital phase dependence, strongly sugg est that the emitting electrons are accelerated in a relativistic jet, and that the optical companion provides the dominant target. Here, we study the effects related to particle transport in the framework of the relativistic jet scenario. We find that even in the most compact binary systems, with parameters similar to Cygnus X-3, particle transport can have a substantial influence on the GeV lightcurve unless the jet is slow, $beta < 0.7$. In more extended binary systems, strong impact of particle transport is nearly unavoidable. Thus, even for a very compact system such as Cygnus X-3, particle transport significantly affects the ability of one-zone models to infer the properties of the gamma-ray production site based on the shape on the GeV lightcurve. We conclude that a detailed study of the gamma-ray spectrum can further constrain the structure and other properties of the gamma-ray emitter in Cygnus X-3, although such a study should account for gamma-gamma attenuation, since it may strongly affect the spectrum above $5rm,GeV$.
First results are presented from kinetic numerical simulations of relativistic collisionless magnetic reconnection in pair plasma that include radiation reaction from both synchrotron and inverse Compton (IC) processes, motivated by non-thermal high- energy astrophysical sources, including in particular blazars. These simulations are initiated from a configuration known as ABC fields that evolves due to coalescence instability and generates thin current layers in its linear phase. Global radiative efficiencies, instability growth rates, time-dependent radiation spectra, lightcurves, variability statistics and the structure of current layers are investigated for a broad range of initial parameters. We find that the IC radiative signatures are generally similar to the synchrotron signatures. The luminosity ratio of IC to synchrotron spectral components, the Compton dominance, can be modified by more than one order of magnitude with respect to its nominal value. For very short cooling lengths, we find evidence for modification of the temperature profile across the current layers, no systematic compression of plasma density, and very consistent profiles of E.B. We decompose the profiles of E.B with the use of the Vlasov momentum equation, demonstrating a contribution from radiation reaction at the thickness scale consistent with the temperature profile.
Sagittarius A* exhibits regular variability in its multiwavelength emission, including daily X-ray flares and roughly continuous near-infrared (NIR) flickering. The origin of this variability is still ambiguous since both inverse Compton and synchrot ron emission are possible radiative mechanisms. The underlying particle distributions are also not well constrained, particularly the non-thermal contribution. In this work, we employ the GPU-accelerated general relativistic magnetohydrodynamics (GRMHD) code H-AMR perform a study of flare flux distributions, including the effect of particle acceleration for the first time in high-resolution 3D simulations of Sgr A*. For the particle acceleration, we use the general relativistic ray-tracing (GRRT) code BHOSS to perform the radiative transfer, assuming a hybrid thermal+non-thermal electron energy distribution. We extract ~60 h lightcurves in the sub-millimetre, NIR and X-ray wavebands, and compare the power spectra and the cumulative flux distributions of the lightcurves to statistical descriptions for Sgr A* flares. Our results indicate that non-thermal populations of electrons arising from turbulence-driven reconnection in weakly magnetised accretion flows lead to moderate NIR and X-ray flares and reasonably describe the X-ray flux distribution while fulfilling multiwavelength flux constraints. These models exhibit high rms% amplitudes, >~150% both in the NIR and the X-rays, with changes in the accretion rate driving the 230~GHz flux variability, in agreement with Sgr A* observations.
134 - Yuji Urata 2014
We present multi-wavelength observations of a typical long duration GRB 120326A at $z=1.798$, including rapid observations using a submillimeter array (SMA), and a comprehensive monitoring in X-ray and optical. The SMA observation provided the fastes t detection to date among seven submillimeter afterglows at 230 GHz. The prompt spectral analysis, using Swift and Suzaku yielded a spectral peak energy of $E^{rm src}_{rm peak}=107.8^{+15.3}_{-15.3}$ keV and equivalent isotropic energy of $E_{rm iso}$ as $3.18^{+0.40}_{-0.32}times 10^{52}$ erg. The temporal evolution and spectral properties in the optical were consistent with the standard forward shock synchrotron with jet collimation ($6^{circ}.69pm0^{circ}.16$). The forward shock modeling using a 2D relativistic hydrodynamic jet simulation also determined the reasonable burst explosion and the synchrotron radiation parameters for the optical afterglow. The X-ray light curve showed no apparent jet break and the temporal decay index relation between the X-ray and optical ($alpha{rm o}-alpha_{X}=-1.45pm0.10$) indicated different radiation processes in the X-ray and optical. Introducing synchrotron self-inverse Compton radiation from reverse shock is a possible solution, and the detection and the slow decay of the afterglow in submillimeter supports that this is a plausible idea. The observed temporal evolution and spectral properties as well as forward shock modeling parameters, enabled to determine reasonable functions to describe the afterglow properties. Because half of events share similar properties in the X-ray and optical to the current event, GRB120326A will be a benchmarks with further rapid follow-ups, using submillimeter instruments such as SMA and ALMA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا