ﻻ يوجد ملخص باللغة العربية
The gamma-ray emission detected from several microquasars can be produced by relativistic electrons emitting through inverse Compton scattering. In particular, the GeV emission detected from Cygnus X-3, and its orbital phase dependence, strongly suggest that the emitting electrons are accelerated in a relativistic jet, and that the optical companion provides the dominant target. Here, we study the effects related to particle transport in the framework of the relativistic jet scenario. We find that even in the most compact binary systems, with parameters similar to Cygnus X-3, particle transport can have a substantial influence on the GeV lightcurve unless the jet is slow, $beta < 0.7$. In more extended binary systems, strong impact of particle transport is nearly unavoidable. Thus, even for a very compact system such as Cygnus X-3, particle transport significantly affects the ability of one-zone models to infer the properties of the gamma-ray production site based on the shape on the GeV lightcurve. We conclude that a detailed study of the gamma-ray spectrum can further constrain the structure and other properties of the gamma-ray emitter in Cygnus X-3, although such a study should account for gamma-gamma attenuation, since it may strongly affect the spectrum above $5rm,GeV$.
Shocks around clusters of galaxies accelerate electrons which upscatter the Cosmic Microwave Background photons to higher-energies. We use an analytical model to calculate this inverse Compton (IC) emission, taking into account the effects of additio
Millisecond pulsars are very likely the main source of gamma-ray emission from globular clusters. However, the relative contributions of two separate emission processes-curvature radiation from millisecond pulsar magnetospheres vs. inverse Compton em
Analyses of Fermi Gamma-Ray Space Telescope data have revealed a source of excess diffuse gamma rays towards the Galactic center that extends up to roughly $pm$20 degrees in latitude. The leading theory postulates that this GeV excess is the aggregat
Relativistic jets launched by rotating black holes are powerful emitters of non-thermal radiation. Extraction of the rotational energy via electromagnetic stresses produces magnetically-dominated jets, which may become turbulent. Studies of magnetica
It is generally held that >100 TeV emission from astrophysical objects unambiguously demonstrates the presence of PeV protons or nuclei, due to the unavoidable Klein-Nishina suppression of inverse Compton emission from electrons. However, in the pres