ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic simulations of relativistic magnetic reconnection with synchrotron and inverse Compton cooling

79   0   0.0 ( 0 )
 نشر من قبل Krzysztof Nalewajko
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

First results are presented from kinetic numerical simulations of relativistic collisionless magnetic reconnection in pair plasma that include radiation reaction from both synchrotron and inverse Compton (IC) processes, motivated by non-thermal high-energy astrophysical sources, including in particular blazars. These simulations are initiated from a configuration known as ABC fields that evolves due to coalescence instability and generates thin current layers in its linear phase. Global radiative efficiencies, instability growth rates, time-dependent radiation spectra, lightcurves, variability statistics and the structure of current layers are investigated for a broad range of initial parameters. We find that the IC radiative signatures are generally similar to the synchrotron signatures. The luminosity ratio of IC to synchrotron spectral components, the Compton dominance, can be modified by more than one order of magnitude with respect to its nominal value. For very short cooling lengths, we find evidence for modification of the temperature profile across the current layers, no systematic compression of plasma density, and very consistent profiles of E.B. We decompose the profiles of E.B with the use of the Vlasov momentum equation, demonstrating a contribution from radiation reaction at the thickness scale consistent with the temperature profile.

قيم البحث

اقرأ أيضاً

Particle-in-cell (PIC) simulations have shown that relativistic collisionless magnetic reconnection drives nonthermal particle acceleration (NTPA), potentially explaining high-energy (X-ray/$gamma$-ray) synchrotron and/or inverse Compton (IC) radiati on observed from various astrophysical sources. The radiation back-reaction force on radiating particles has been neglected in most of these simulations, even though radiative cooling considerably alters particle dynamics in many astrophysical environments where reconnection may be important. We present a radiative PIC study examining the effects of external IC cooling on the basic dynamics, NTPA, and radiative signatures of relativistic reconnection in pair plasmas. We find that, while the reconnection rate and overall dynamics are basically unchanged, IC cooling significantly influences NTPA: the particle spectra still show a hard power law (index $geq -2$) as in nonradiative reconnection, but transition to a steeper power law that extends to a cooling-dependent cutoff. The steep power-law index fluctuates in time between roughly $-$3 and $-$5. The time-integrated photon spectra display corresponding power laws with indices $approx -0.5$ and $approx -1.1$, similar to those observed in hard X-ray spectra of accreting black holes.
Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae, hot accretion flows onto black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. We find that if the system reaches a statistical equilibrium where turbulent heating is balanced by radiative cooling, the effective electron temperature tends to attain a universal value $theta = kT_e/m_e c^2 sim 1/sqrt{tau_T}$, where $tau_T=n_esigma_T L ll 1$ is the systems Thomson optical depth, essentially independent of the strength of turbulent driving or magnetic field. This is because both MHD turbulent dissipation and synchrotron cooling are proportional to the magnetic energy density. We also find that synchrotron self-Compton (SSC) cooling and perhaps a few higher-order IC components are automatically comparable to synchrotron in this regime. The overall broadband radiation spectrum then consists of several distinct components (synchrotron, SSC, etc.), well separated in photon energy (by a factor $sim tau_T^{-1}$) and roughly equal in power. The number of IC peaks is checked by Klein-Nishina effects and depends logarithmically on $tau_T$ and the magnetic field. We also examine the limitations due to synchrotron self-absorption, explore applications to Crab PWN and blazar jets, and discuss links to radiative magnetic reconnection.
We present the results of 2D particle-in-cell (PIC) simulations of relativistic magnetic reconnection (RMR) in electron-positron plasma, including the dynamical influence of the synchrotron radiation process, and integrating the observable emission s ignatures. The simulations are initiated with a single Harris current layer with a central gap that triggers the RMR process. We achieve a steady-state reconnection with unrestricted outflows by means of open boundary conditions. The radiative cooling efficiency is regulated by the choice of initial plasma temperature Theta. We explore different values of Theta and of the background magnetisation sigma_0. Throughout the simulations, plasmoids are generated in the central region of the layer, and they evolve at different rates, achieving a wide range of sizes. The gaps between plasmoids are filled by smooth relativistic outflows called minijets, whose contribution to the observed radiation is very limited due to their low particle densities. Small-sized plasmoids are rapidly accelerated, however, they have lower contributions to the observed emission, despite stronger relativistic beaming. Large-sized plasmoids are slow, but produce most of the observed synchrotron emission, with major part of their radiation produced within the central cores, the density of which is enhanced by radiative cooling. Synchrotron lightcurves show rapid bright flares that can be identified as originating from mergers between small/fast plasmoids and large/slow targets moving in the same direction. In the high-magnetisation case, the accelerated particles form a broken power-law energy distribution with a soft tail produced by particles accelerated in the minijets.
Fully kinetic two-dimensional particle-in-cell simulations are used to study electron acceleration at high-Mach-number nonrelativistic perpendicular shocks. SNR shocks are mediated by the Weibel instability which is excited because of an interaction between shock-reflected and upstream ions. Nonlinear evolution of the Weibel instability leads to the formation of current sheets. At the turbulent shock ramp the current sheets decay through magnetic reconnection. The number of reconnection sites strongly depends on the ion-to-electron mass ratio and the Alfvenic Mach number of the simulated shock. Electron acceleration is observed at locations where magnetic reconnection operates. For the highest mass ratios almost all electrons are involved in magnetic reconnection, which makes the magnetic reconnection the dominant acceleration process for electrons at these shocks. We discuss the relevance of our results for 3D systems with realistic ion-to-electron mass ratio.
We present the results of three-dimensional kinetic particle-in-cell (PIC) simulations of isotropic periodic relativistically magnetized pair-plasma equilibria known as the ABC fields. We performed several simulations for initial wavenumbers k_ini = 2 or k_ini = 4, different efficiencies of radiative cooling (including radiation reaction from synchrotron and inverse Compton processes), and different mean magnetization values. These equilibria evolve by means of ideal coalescence instability, the saturation of which generates ab initio localized kinetically-thin current layers -- sites of magnetic reconnection and non-thermal particle acceleration -- eventually relaxing to a state of lower magnetic energy at conserved total magnetic helicity. We demonstrate that magnetic relaxation involves in addition localized collapses of magnetic minima and bulk mergers of current layer pairs, which represents a novel scenario of spontaneous magnetic dissipation with application to the rapid gamma-ray flares of blazars and of the Crab Nebula. Particle acceleration under strong radiative losses leads to formation of power-law indices N(gamma) ~ gamma^(-p) up to p ~= -2.3 at mean hot magnetization values of <sigma_hot> ~ 6. Individual energetic particles can be accelerated within one light-crossing time by electric fields that are largely perpendicular to the local magnetic fields. The energetic particles are highly anisotropic due to the kinetic beaming effect, implying complex patterns of rapid variability. A significant fraction of the initial total energy can be radiated away in the overall process of magnetoluminescence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا