ﻻ يوجد ملخص باللغة العربية
We propose a single-step non-generational conjecture of all first class constraints,(involving only variables compatible with canonical Poisson brackets), for a realistic gauge singular field theory. We verify our proposal for the free electromagnetic field, Yang-Mills fields in interaction with spinor and scalar fields, and we also verify our proposal in the case gravitational field. We show that the first class constraints which were reached at using the standard Diracs multi-generational algorithm will be reproduced using the proposed conjecture. We make no claim that our conjecture will be valid for all mathematically plausible Lagrangians; but, nevertheless the examples we consider here show that this conjecture is valid for wide range or much of realistic fields of physical interest that are know to exist and are manifested in nature
In [7] we proposed a non-generational conjectural derivation of all first class constraints (involving, only, variables compatible with canonical Poisson brackets) for realistic gauge (singular) field theories; and we verified the conjecture in cases
We derive an adiabatic theory for a stochastic differential equation, $ varepsilon, mathrm{d} X(s) = L_1(s) X(s), mathrm{d} s + sqrt{varepsilon} L_2(s) X(s) , mathrm{d} B_s, $ under a condition that instantaneous stationary states of $L_1(s)$ are als
It was recently shown [2] that the resolvent algebra of a non-relativistic Bose field determines a gauge invariant (particle number preserving) kinematical algebra of observables which is stable under the automorphic action of a large family of inter
Dirac equation is solved for some exponential potentials, hypergeometric-type potential, generalized Morse potential and Poschl-Teller potential with any spin-orbit quantum number $kappa$ in the case of spin and pseudospin symmetry, respectively. We
Electric resistance in conducting media is related to heat (or entropy) production in presence of electric fields. In this paper, by using Arakis relative entropy for states, we mathematically define and analyze the heat production of free fermions w