ترغب بنشر مسار تعليمي؟ اضغط هنا

The resolvent algebra of non-relativistic Bose fields: sectors, morphisms, fields and dynamics

118   0   0.0 ( 0 )
 نشر من قبل Detlev Buchholz
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Detlev Buchholz




اسأل ChatGPT حول البحث

It was recently shown [2] that the resolvent algebra of a non-relativistic Bose field determines a gauge invariant (particle number preserving) kinematical algebra of observables which is stable under the automorphic action of a large family of interacting dynamics involving pair potentials. In the present article, this observable algebra is extended to a field algebra by adding to it isometries, which transform as tensors under gauge transformations and induce particle number changing morphisms of the observables. Different morphisms are linked by intertwiners in the observable algebra. It is shown that such intertwiners also induce time translations of the morphisms. As a consequence, the field algebra is stable under the automorphic action of the interacting dynamics as well. These results establish a concrete C*-algebraic framework for interacting non-relativistic Bose systems in infinite space. It provides an adequate basis for studies of long range phenomena, such as phase transitions, stability properties of equilibrium states, condensates, and the breakdown of symmetries.



قيم البحث

اقرأ أيضاً

92 - Detlev Buchholz 2017
The structure of the gauge invariant (particle number preserving) C*-algebra generated by the resolvents of a non-relativistic Bose field is analyzed. It is shown to form a dense subalgebra of the bounded inverse limit of a system of approximately fi nite dimensional C*-algebras. Based on this observation, it is proven that the closure of the gauge invariant algebra is stable under the dynamics induced by Hamiltonians involving pair potentials. These facts allow to proceed to a description of interacting Bosons in terms of C*-dynamical systems. It is outlined how the present approach leads to simplifications in the construction of infinite bosonic states and sheds new light on topics in many body theory.
Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charg es, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of spacelike linearity. Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.
Electric resistance in conducting media is related to heat (or entropy) production in presence of electric fields. In this paper, by using Arakis relative entropy for states, we mathematically define and analyze the heat production of free fermions w ithin external potentials. More precisely, we investigate the heat production of the non-autonomous C*-dynamical system obtained from the fermionic second quantization of a discrete Schrodinger operator with bounded static potential in presence of an electric field that is time- and space-dependent. It is a first preliminary step towards a mathematical description of transport properties of fermions from thermal considerations. This program will be carried out in several papers. The regime of small and slowly varying in space electric fields is important in this context, and is studied the present paper. We use tree-decay bounds of the $n$-point, $nin 2mathbb{N}$, correlations of the many-fermion system to analyze this regime. We verify below the 1st law of thermodynamics for the system under consideration. The latter implies, for systems doing no work, that the heat produced by the electromagnetic field is exactly the increase of the internal energy resulting from the modification of the (infinite volume) state of the fermion system. The identification of heat production with an energy increment is, among other things, technically convenient. We initially focus our study on non-interacting (or free) fermions, but our approach will be later applied to weakly interacting fermions.
We consider an atom interacting with the quantized electromagnetic field in the standard model of non-relativistic QED. The nucleus is supposed to be fixed. We prove smoothness of the resolvent and local decay of the photon dynamics for quantum state s in a spectral interval I just above the ground state energy. Our results are uniform with respect to I. Their proofs are based on abstract Mourres theory, a Mourre inequality established in [FGS1], Hardy-type estimates in Fock space, and a low-energy dyadic decomposition.
We consider a relativistic charged particle in a background scalar field depending on both space and time. Poincare, dilation and special conformal symmetries of the field generate conserved quantities in the charge motion, and we exploit this to gen erate examples of superintegrable relativistic systems. We also show that the corresponding single-particle wavefunctions needed for the quantum scattering problem can be found exactly, by solving the Klein-Gordon equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا