ﻻ يوجد ملخص باللغة العربية
The classical Heisenberg model on the trillium and distorted windmill lattices exhibits a degenerate ground state within large-$N$ theory, where the degenerate wavevectors form a surface and line, in 3-dimensional space, respectively. We name such states partially ordered to represent the existence of long-range order along the direction normal to these degenerate manifolds. We investigate the effects of thermal fluctuations using Monte Carlo (MC) methods, and find a first order transition to a magnetically ordered state for both cases. We further show that the ordering on the distorted windmill lattice is due to order by disorder, while the ground state of the trillium lattice is unique. Despite these different routes to the realization of low temperature ordered phases, the static structure factors obtained by large-$N$ theory and MC simulations for each lattice show quantitative agreement in the cooperative paramagnetic regime at finite temperatures. This suggests that a remnant of the characteristic angle-dependent spin correlations of partial order remains above the transition temperatures for both lattices. The possible relevance of these results to $beta$-Mn, CeIrSi, and MnSi is discussed.
We investigate the classical Heisenberg and planar (XY) models on the windmill lattice. The windmill lattice is formed out of two widely occurring lattice geometries: a triangular lattice is coupled to its dual honeycomb lattice. Using a combination
Magnetic transition phenomena in cubic chiral antiferromagnet EuPtSi with $T_{rm N}$=4.0~K were investigated by means of single crystal neutron diffraction. At 0.3~K in the ground state, magnetic peaks emerge at positions represented by an ordering v
The magnetic phase diagram of the quarter-filled generalized Wigner lattice with nearest- and next-nearest-neighbor hopping t_1 and t_2 is explored. We find a region at negative t_2 with fully saturated ferromagnetic ground states that we attribute t
Quantum spin liquids are exotic states of matter which form when strongly frustrated magnetic interactions induce a highly entangled quantum paramagnet far below the energy scale of the magnetic interactions. Three-dimensional cases are especially ch
We study themagnetism of a spin-1 substance Li2Ni2Mo3O12. The spin system consists of distorted honeycomb lattices and linear chains of Ni2+ spins. Li+ ions enter about 25% and 50% of the honeycomb and chain Ni sites, respectively, creating disorder