ﻻ يوجد ملخص باللغة العربية
Quantum spin liquids are exotic states of matter which form when strongly frustrated magnetic interactions induce a highly entangled quantum paramagnet far below the energy scale of the magnetic interactions. Three-dimensional cases are especially challenging due to the significant reduction of the influence of quantum fluctuations. Here, we report the magnetic characterization of {kni} forming a three dimensional network of Ni$^{2+}$ spins. Using density functional theory calculations we show that this network consists of two interconnected spin-1 trillium lattices. In the absence of a magnetic field, magnetization, specific heat, neutron scattering and muon spin relaxation experiments demonstrate a highly correlated and dynamic state, coexisting with a peculiar, very small static component exhibiting a strongly renormalized moment. A magnetic field $B gtrsim 4$ T diminishes the ordered component and drives the system in a pure quantum spin liquid state. This shows that a system of interconnected $S=1$ trillium lattices exhibit a significantly elevated level of geometrical frustration.
Two-dimensional triangular-lattice materials with spin-1/2 are perfect platforms for investigating quantum frustrated physics with spin fluctuations. Here we report the structure, magnetization, heat capacity and inelastic neutron scattering (INS) re
K$_3$Cu$_3$AlO$_2$(SO$_4$)$_4$ is a highly one-dimensional spin-1/2 inequilateral diamond-chain antiferromagnet. Spinon continuum and spin-singlet dimer excitations are observed in the inelastic neutron scattering spectra, which is in excellent agree
Kitaev quantum spin liquids (QSLs) are exotic states of matter that are predicted to host Majorana fermions and gauge flux excitations. However, so far all known Kitaev QSL candidates are known to have appreciable non-Kitaev interactions that pushes
$Ni Cl_2$-$4SC(NH_2)_2$ (known as DTN) is a spin-1 material with a strong single-ion anisotropy that is regarded as a new candidate for Bose-Einstein condensation (BEC) of spin degrees of freedom. We present a systematic study of the low-energy excit
The bulk single crystals of $S = 1$ chain compound Ni(C$_3$H$_{10}$N$_2$)$_2$NO$_2$ClO$_4$ are grown by using a slow evaporation method at a constant temperature and a slow cooling method. It is found that the optimum condition of growing large cryst