ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Photometric Redshifts using GALEX Observations for the SDSS Stripe 82 and the Next Generation of SZ Cluster Surveys

216   0   0.0 ( 0 )
 نشر من قبل Michael Niemack
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Four large-area Sunyaev-Zeldovich (SZ) experiments -- APEX-SZ, SPT, ACT, and Planck -- promise to detect clusters of galaxies through the distortion of Cosmic Microwave Background photons by hot (> 10^6 K) cluster gas (the SZ effect) over thousands of square degrees. A large observational follow-up effort to obtain redshifts for these SZ-detected clusters is under way. Given the large area covered by these surveys, most of the redshifts will be obtained via the photometric redshift (photo-z) technique. Here we demonstrate, in an application using ~3000 SDSS stripe 82 galaxies with r<20, how the addition of GALEX photometry (FUV, NUV) greatly improves the photometric redshifts of galaxies obtained with optical griz or ugriz photometry. In the case where large spectroscopic training sets are available, empirical neural-network-based techniques (e.g., ANNz) can yield a photo-z scatter of $sigma_z = 0.018 (1+z)$. If large spectroscopic training sets are not available, the addition of GALEX data makes possible the use simple maximum likelihood techniques, without resorting to Bayesian priors, and obtains $sigma_z=0.04(1+z)$, accuracy that approaches the accuracy obtained using spectroscopic training of neural networks on ugriz observations. This improvement is especially notable for blue galaxies. To achieve these results, we have developed a new set of high resolution spectral templates based on physical information about the star formation history of galaxies. We envision these templates to be useful for the next generation of photo-z applications. We make our spectral templates and new photo-z catalogs available to the community at http://www.ice.csic.es/personal/jimenez/PHOTOZ .

قيم البحث

اقرأ أيضاً

80 - S. J. Curran 2020
Machine learning techniques, specifically the k-nearest neighbour algorithm applied to optical band colours, have had some success in predicting photometric redshifts of quasi-stellar objects (QSOs): Although the mean of differences between the spect roscopic and photometric redshifts is close to zero, the distribution of these differences remains wide and distinctly non-Gaussian. As per our previous empirical estimate of photometric redshifts, we find that the predictions can be significantly improved by adding colours from other wavebands, namely the near-infrared and ultraviolet. Self-testing this, by using half of the 33 643 strong QSO sample to train the algorithm, results in a significantly narrower spread for the remaining half of the sample. Using the whole QSO sample to train the algorithm, the same set of magnitudes return a similar spread for a sample of radio sources (quasars). Although the matching coincidence is relatively low (739 of the 3663 sources having photometry in the relevant bands), this is still significantly larger than from the empirical method (2%) and thus may provide a method with which to obtain redshifts for the vast number of continuum radio sources expected to be detected with the next generation of large radio telescopes.
111 - Karun Thanjavur 2021
We extend the SDSS Stripe 82 Standard Stars Catalog with post-2007 SDSS imaging data. This improved version lists averaged SDSS ugriz photometry for nearly a million stars brighter than r~22 mag. With 2-3x more measurements per star, random errors ar e 1.4-1.7x smaller than in the original catalog, and about 3x smaller than for individual SDSS runs. Random errors in the new catalog are ~< 0.01 mag for stars brighter than 20.0, 21.0, 21.0, 20.5, and 19.0 mag in u, g, r, i, and z-bands, respectively. We achieve this error threshold by using the Gaia Early Data Release 3 (EDR3) Gmag photometry to derive gray photometric zeropoint corrections, as functions of R.A. and Declination, for the SDSS catalog, and use the Gaia BP-RP colour to derive corrections in the ugiz bands, relative to the r-band. The quality of the recalibrated photometry, tested against Pan-STARRS1, DES, CFIS and GALEX surveys, indicates spatial variations of photometric zeropoints <=0.01 mag (RMS), with typical values of 3-7 millimag in the R.A., and 1-2 millimag in the Declination directions, except for <~6 millimag scatter in the u-band. We also report a few minor photometric problems with other surveys considered here, including a magnitude-dependent ~0.01 mag bias between 16 < G_Gaia < 20 in the Gaia EDR3. Our new, publicly available catalog offers robust calibration of ugriz photometry below 1% level, and will be helpful during the commissioning of the Vera C. Rubin Observatory Legacy Survey of Space and Time.
We report photometric estimates of effective temperature, $T_{rm eff}$, metallicity, [Fe/H], carbonicity, [C/Fe], and absolute carbon abundances, $A{rm (C)}$, for over 700,000 stars from the Southern Photometric Local Universe Survey (S-PLUS) Data Re lease 2, covering a substantial fraction of the equatorial Sloan Digital Sky Survey Stripe 82. We present an analysis for two stellar populations: 1) halo main-sequence turnoff stars and 2) K-dwarf stars of mass $0.58 < M/M_{odot} <0.75$ in the Solar Neighborhood. Application of the Stellar Photometric Index Network Explorer (SPHINX) to the mixed-bandwidth (narrow- plus wide-band) filter photometry from S-PLUS produces robust estimates of the metallicities and carbon abundances in stellar atmospheres over a wide range of temperature, $4250 < T_{rm eff} textrm{(K)} < 7000$. The use of multiple narrow-band S-PLUS filters enables SPHINX to achieve substantially lower levels of catastrophic failures (large offsets in metallicity estimates relative to spectroscopic determinations) than previous efforts using a single metallicity-sensitive narrow-band filter. We constrain the exponential slope of the Milky Ways K-dwarf halo metallicity distribution function (MDF), $lambda_{10, textrm{[Fe/H]}} = 0.85 pm 0.21$, over the metallicity range $-2.5 < textrm{[Fe/H]} < -1.0$; the MDF of our local-volume K-dwarf sample is well-represented by a gamma distribution with parameters $alpha=2.8$ and $beta=4.2$. S-PLUS photometry obtains absolute carbon abundances with a precision of $sim 0.35$dex for stars with $T_{rm eff} < 6500$K. We identify 364 candidate carbon-enhanced metal-poor stars, obtain assignments of these stars into the Yoon-Beers morphological groups in the $A$(C)-[Fe/H] space, and derive the CEMP frequencies.
We compare Stetsons photometric standards with measurements listed in a standard star catalog constructed using repeated SDSS imaging observations. The SDSS catalog includes over 700,000 candidate standard stars from the equatorial stripe 82 (|Dec|<1 .266 deg) in the RA range 20h 34 to 4h 00, and with the $r$ band magnitudes in the range 14--21. The distributions of measurements for individual sources demonstrate that the SDSS photometric pipeline correctly estimates random photometric errors, which are below 0.01 mag for stars brighter than (19.5, 20.5, 20.5, 20, 18.5) in ugriz, respectively (about twice as good as for individual SDSS runs). We derive mean photometric transformations between the SDSS gri and the BVRI system using 1165 Stetson stars found in the equatorial stripe 82, and then study the spatial variation of the difference in zeropoints between the two catalogs. Using third order polynomials to describe the color terms, we find that photometric measurements for main-sequence stars can be transformed between the two systems with systematic errors smaller than a few millimagnitudes. The spatial variation of photometric zeropoints in the two catalogs typically does not exceed 0.01 magnitude. Consequently, the SDSS Standard Star Catalog for Stripe 82 can be used to calibrate new data in both the SDSS ugriz and the BVRI systems with a similar accuracy.
315 - A. F. Kowalski 2009
We present a flare rate analysis of 50,130 M dwarf light curves in SDSS Stripe 82. We identified 271 flares using a customized variability index to search ~2.5 million photometric observations for flux increases in the u- and g-bands. Every image of a flaring observation was examined by eye and with a PSF-matching and image subtraction tool to guard against false positives. Flaring is found to be strongly correlated with the appearance of H-alpha in emission in the quiet spectrum. Of the 99 flare stars that have spectra, we classify 8 as relatively inactive. The flaring fraction is found to increase strongly in stars with redder colors during quiescence, which can be attributed to the increasing flare visibility and increasing active fraction for redder stars. The flaring fraction is strongly correlated with |Z| distance such that most stars that flare are within 300 pc of the Galactic plane. We derive flare u-band luminosities and find that the most luminous flares occur on the earlier-type M dwarfs. Our best estimate of the lower limit on the flaring rate (averaged over Stripe 82) for flares with Delta u ge 0.7 magnitudes on stars with u < 22 is 1.3 flares hour^-1 square degree^-1 but can vary significantly with the line-of-sight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا