ترغب بنشر مسار تعليمي؟ اضغط هنا

M Dwarfs in SDSS Stripe 82: Photometric Light Curves and Flare Rate Analysis

356   0   0.0 ( 0 )
 نشر من قبل Adam Kowalski
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. F. Kowalski




اسأل ChatGPT حول البحث

We present a flare rate analysis of 50,130 M dwarf light curves in SDSS Stripe 82. We identified 271 flares using a customized variability index to search ~2.5 million photometric observations for flux increases in the u- and g-bands. Every image of a flaring observation was examined by eye and with a PSF-matching and image subtraction tool to guard against false positives. Flaring is found to be strongly correlated with the appearance of H-alpha in emission in the quiet spectrum. Of the 99 flare stars that have spectra, we classify 8 as relatively inactive. The flaring fraction is found to increase strongly in stars with redder colors during quiescence, which can be attributed to the increasing flare visibility and increasing active fraction for redder stars. The flaring fraction is strongly correlated with |Z| distance such that most stars that flare are within 300 pc of the Galactic plane. We derive flare u-band luminosities and find that the most luminous flares occur on the earlier-type M dwarfs. Our best estimate of the lower limit on the flaring rate (averaged over Stripe 82) for flares with Delta u ge 0.7 magnitudes on stars with u < 22 is 1.3 flares hour^-1 square degree^-1 but can vary significantly with the line-of-sight.



قيم البحث

اقرأ أيضاً

We report on the analysis of ~22,000 M dwarfs using a statistical parallax method. This technique employs a maximum-likelihood formulation to simultaneously solve for the absolute magnitude, velocity ellipsoid parameters and reflex solar motion of a homogeneous stellar sample, and has previously been applied to Galactic RR Lyrae and Cepheid populations and to the Palomar/Michigan State University (PMSU) survey of nearby low-mass stars. We analyze subsamples of the most recent spectroscopic catalog of M dwarfs in the Sloan Digital Sky Survey (SDSS) to determine absolute magnitudes and kinematic properties as a function of spectral type, color, chromospheric activity and metallicity. We find new, independent spectral type-absolute magnitude relations, and color-absolute magnitude relations in the SDSS filters, and compare to those found from other methods. Active stars have brighter absolute magnitudes and lower metallicity stars have fainter absolute magnitudes for stars of type M0-M4. Our kinematic analysis confirms previous results for the solar motion and velocity dispersions, with more distant stars possessing larger peculiar motions, and chromospherically active (younger) stars having smaller velocity dispersions than their inactive counterparts. We find some evidence for systematic differences in the mean U and W velocities of samples subdivided by color.
We present a catalog of periodic stellar variability in the Stripe 82 region of the Sloan Digital Sky Survey (SDSS). After aggregating and recalibrating catalog-level data from the survey, we ran a period-finding algorithm (Supersmoother) on all poin t-source lightcurves. We used color selection to identify systems that are likely to contain low-mass stars, in particular M dwarfs and white dwarfs. In total, we found 207 candidates, the vast majority of which appear to be in eclipsing binary systems. The catalog described in this paper includes 42 candidate M dwarf / white dwarf pairs, 4 white-dwarf pairs, 59 systems whose colors indicate they are composed of 2 M dwarfs and whose lightcurve shapes suggest they are in detached eclipsing binaries, and 28 M dwarf systems whose lightcurve shapes suggest they are in contact binaries. We find no detached systems with periods longer than 3 days, thus the majority of our sources are likely to have experienced orbital spin-up and enhanced magnetic activity. Indeed, twenty-six of twenty-seven M dwarf systems that we have spectra for show signs of chromospheric magnetic activity, far higher than the 24% seen in field stars of the same spectral type. We also find binaries composed of stars that bracket the expected boundary between partially and fully convective interiors, which will allow the measurement of the stellar mass-radius relationship across this transition. The majority of our contact systems have short orbital periods, with small variance (0.02 days) in the sample near the observed cutoff of 0.22 days. The accumulation of these stars at short orbital period suggests that the process of angular momentum loss, leading to period evolution, becomes less efficient at short periods. (Abridged)
We report on a blind survey for extragalactic radio variability that was carried out by comparing two epochs of data from the FIRST survey with a third epoch from a new 1.4 GHz survey of SDSS Stripe 82. The three epochs are spaced seven years apart a nd have an overlapping area of 60 deg^2. We uncover 89 variable sources down to the millijansky level, 75 of which are newly-identified, and we find no evidence for transient phenomena. This new sample of variable sources allows us to infer an upper limit to the mean characteristic timescale of AGN radio variability of 14 years. We find that only 1% of extragalactic sources have fractional variability f_var >3, while 44% of Galactic sources vary by this much. The variable sample contains a larger fraction of quasars than a comparable non-variable control sample, though the majority of the variable sources appear to be extended galaxies in the optical. This implies that either quasars are not the dominant contributor to the variability of the sample, or that the deep optical data allow us to detect the host galaxies of some low-z quasars. We use the new, higher resolution data to report on the morphology of the variable sources. Finally, we show that the fraction of sources that are variable remains constant or increases at low flux densities. This may imply that next generation radio surveys with telescopes like the Australian Square Kilometer Array Pathfinder and MeerKAT will see a constant or even increasing fraction of variable sources down into the submillijansky regime.
We present first results from our study of the properties of ~400 low redshift (z < 0.5) quasars, based on a large homogeneous dataset derived from the Stripe 82 area of the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). For this sky region, d eep (r~22.4) u,g,r,i,z images are available, up to ~2 mag deeper than standard SDSS images, allowing us to study both the host galaxies and the Mpc-scale environments of the quasars. This sample greatly outnumbers previous studies of low redshift quasar hosts, from the ground or from space. Here we report the preliminary results for the quasar host galaxies. We are able to resolve the host galaxy in ~80 % of the quasars. The quasar hosts are luminous and large, the majority of them in the range between M*-1 and M*-2, and with ~10 kpc galaxy scale-lengths. Almost half of the host galaxies are best fit with an exponential disk, while the rest are spheroid-dominated. There is a reasonable relation between the central black hole mass and the host galaxy luminosity.
172 - L.L. Watkins 2009
We present an analysis of the substructure revealed by 407 RR Lyraes in Sloan Digital Sky Survey (SDSS) Stripe 82. Period estimates are determined to high accuracy using a string-length method. A subset of 178 RR Lyraes with spectrally derived metall icities are employed to derive metallicity-period-amplitude relations, which are then used to find metallicities and distances for the entire sample. The RR Lyraes lie between 5 and 115 kpc from the Galactic center. They are divided into subsets of 316 RRab types and 91 RRc types based on their period, colour and metallicity. The density distribution is not smooth, but dominated by clumps and substructure. Samples of 55 and 237 RR Lyraes associated with the Sagittarius Stream and the Hercules-Aquila Cloud respectively are identified. Hence, ~ 70 % of the RR Lyraes in Stripe 82 belong to known substructure. There is a sharp break in the density distribution at Galactocentric radii of 40 kpc, reflecting the fact that the dominant substructure in Stripe 82 - the Hercules-Aquila Cloud and the Sagittarius Stream - lies within 40 kpc. In fact, almost 60 % of all the RR Lyraes in Stripe 82 are associated with the Hercules-Aquila Cloud alone, which emphasises its pre-eminence. Additionally, evidence of a new and distant substructure - the Pisces Overdensity - is found, consisting of 28 faint RR Lyraes centered on Galactic coordinates (80 deg, -55 deg) and with distances of ~ 80 kpc. The total stellar mass in the Pisces Overdensity is ~10000 solar masses and its metallicity is [Fe/H] ~ -1.5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا