ﻻ يوجد ملخص باللغة العربية
We determine the phase diagram and the momentum distribution for a one-dimensional Bose gas with repulsive short range interactions in the presence of a two-color lattice potential, with incommensurate ratio among the respective wave lengths, by using a combined numerical (DMRG) and analytical (bosonization) analysis. The system displays a delocalized (superfluid) phase at small values of the intensity of the secondary lattice V2 and a localized (Bose glass-like) phase at larger intensity V2. We analyze the localization transition as a function of the height V2 beyond the known limits of free and hard-core bosons. We find that weak repulsive interactions unfavor the localized phase i. e. they increase the critical value of V2 at which localization occurs. In the case of integer filling of the primary lattice, the phase diagram at fixed density displays, in addition to a transition from a superfluid to a Bose glass phase, a transition to a Mott-insulating state for not too large V2 and large repulsion. We also analyze the emergence of a Bose-glass phase by looking at the evolution of the Mott-insulator lobes when increasing V2. The Mott lobes shrink and disappear above a critical value of V2. Finally, we characterize the superfluid phase by the momentum distribution, and show that it displays a power-law decay at small momenta typical of Luttinger liquids, with an exponent depending on the combined effect of the interactions and of the secondary lattice. In addition, we observe two side peaks which are due to the diffraction of the Bose gas by the second lattice. This latter feature could be observed in current experiments as characteristics of pseudo-random Bose systems.
We study Bragg spectroscopy of a strongly interacting Bose-Einstein condensate using time-dependent Hartree-Fock-Bogoliubov theory. We include approximatively the effect of the momentum dependent scattering amplitude which is shown to be the dominant
We study the anisotropic, elliptic expansion of a thermal atomic Bose gas released from an anisotropic trapping potential, for a wide range of interaction strengths across a Feshbach resonance. We show that in our system this hydrodynamic phenomenon
We investigate the harmonically trapped interacting Bose gas in a quasi-2D geometry using the classical field method. The system exhibits quasi-long-range order and non-classical rotational inertia at temperatures below the Berezinskii-Kosterlitz-Tho
We propose experimentally feasible means for non-destructive thermometry of homogeneous Bose Einstein condensates in different spatial dimensions ($din{1,2,3}$). Our impurity based protocol suggests that the fundamental error bound on thermometry at
The atomic Bose gas is studied across a Feshbach resonance, mapping out its phase diagram, and computing its thermodynamics and excitation spectra. It is shown that such a degenerate gas admits two distinct atomic and molecular superfluid phases, wit