ترغب بنشر مسار تعليمي؟ اضغط هنا

Superfluidity of an interacting trapped quasi-2D Bose gas

117   0   0.0 ( 0 )
 نشر من قبل Tapio Simula
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the harmonically trapped interacting Bose gas in a quasi-2D geometry using the classical field method. The system exhibits quasi-long-range order and non-classical rotational inertia at temperatures below the Berezinskii-Kosterlitz-Thouless cross-over to the superfluid state. In particular, we compute the scissors-mode oscillation frequencies and find that the irrotational mode changes its frequency as the temperature is sweeped across the cross-over thus providing microscopic evidence for the emergence of superfluidity.



قيم البحث

اقرأ أيضاً

We simulate a trapped quasi-two-dimensional Bose gas using a classical field method. To interpret our results we identify the uniform Berezinskii-Kosterlitz-Thouless (BKT) temperature $T_{BKT}$ as where the system phase space density satisfies a crit ical value. We observe that density fluctuations are suppressed in the system well above $T_{BKT}$ when a quasi-condensate forms as the first occurrence of degeneracy. At lower temperatures, but still above $T_{BKT}$, we observe the development of appreciable coherence as a prominent finite-size effect, which manifests as bimodality in the momentum distribution of the system. At $T_{BKT}$ algebraic decay of off-diagonal correlations occurs near the trap center with an exponent of 0.25, as expected for the uniform system. Our results characterize the low temperature phase diagram for a trapped quasi-2D Bose gas and are consistent with observations made in recent experiments.
226 - P. Clade , C. Ryu , A. Ramanathan 2008
We present experimental results on a Bose gas in a quasi-2D geometry near the Berezinskii, Kosterlitz and Thouless (BKT) transition temperature. By measuring the density profile, textit{in situ} and after time of flight, and the coherence length, we identify different states of the gas. In particular, we observe that the gas develops a bimodal distribution without long range order. In this state, the gas presents a longer coherence length than the thermal cloud; it is quasi-condensed but is not superfluid. Experimental evidence indicates that we observe the superfluid transition (BKT transition).
We provide an in depth analysis of the theory proposed by Holzmann, Chevallier and Krauth (HCK) [Europhys. Lett., {bf 82}, 30001 (2008)] for predicting the temperature at which the Berezinskii-Kosterlitz-Thouless (BKT) transition to a superfluid stat e occurs in the harmonically trapped quasi-two-dimensional (2D) Bose gas. Their theory is based on a meanfield model of the system density and we show that the HCK predictions change appreciably when an improved meanfield theory and identification of the transition point is used. In this analysis we develop a consistent theory that provides a lower bound for the BKT transition temperature in the trapped quasi-2D Bose gas.
We investigate the superfluid behavior of a two-dimensional (2D) Bose gas of $^{87}$Rb atoms using classical field dynamics. In the experiment by R. Desbuquois textit{et al.}, Nat. Phys. textbf{8}, 645 (2012), a 2D quasicondensate in a trap is stirre d by a blue-detuned laser beam along a circular path around the trap center. Here, we study this experiment from a theoretical perspective. The heating induced by stirring increases rapidly above a velocity $v_c$, which we define as the critical velocity. We identify the superfluid, the crossover, and the thermal regime by a finite, a sharply decreasing, and a vanishing critical velocity, respectively. We demonstrate that the onset of heating occurs due to the creation of vortex-antivortex pairs. A direct comparison of our numerical results to the experimental ones shows good agreement, if a systematic shift of the critical phase-space density is included. We relate this shift to the absence of thermal equilibrium between the condensate and the thermal wings, which were used in the experiment to extract the temperature. We expand on this observation by studying the full relaxation dynamics between the condensate and the thermal cloud.
We determine the phase diagram and the momentum distribution for a one-dimensional Bose gas with repulsive short range interactions in the presence of a two-color lattice potential, with incommensurate ratio among the respective wave lengths, by usin g a combined numerical (DMRG) and analytical (bosonization) analysis. The system displays a delocalized (superfluid) phase at small values of the intensity of the secondary lattice V2 and a localized (Bose glass-like) phase at larger intensity V2. We analyze the localization transition as a function of the height V2 beyond the known limits of free and hard-core bosons. We find that weak repulsive interactions unfavor the localized phase i. e. they increase the critical value of V2 at which localization occurs. In the case of integer filling of the primary lattice, the phase diagram at fixed density displays, in addition to a transition from a superfluid to a Bose glass phase, a transition to a Mott-insulating state for not too large V2 and large repulsion. We also analyze the emergence of a Bose-glass phase by looking at the evolution of the Mott-insulator lobes when increasing V2. The Mott lobes shrink and disappear above a critical value of V2. Finally, we characterize the superfluid phase by the momentum distribution, and show that it displays a power-law decay at small momenta typical of Luttinger liquids, with an exponent depending on the combined effect of the interactions and of the secondary lattice. In addition, we observe two side peaks which are due to the diffraction of the Bose gas by the second lattice. This latter feature could be observed in current experiments as characteristics of pseudo-random Bose systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا