ترغب بنشر مسار تعليمي؟ اضغط هنا

A shallow though extensive H2 2.12 micron imaging survey of Taurus-Auriga-Perseus: I. NGC1333, L1455, L1448 and B1

58   0   0.0 ( 0 )
 نشر من قبل Christopher Davis
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss wide-field near-IR imaging of the NGC1333, L1448, L1455 and B1 star forming regions in Perseus. The observations have been extracted from a much larger narrow-band imaging survey of the Taurus-Auriga-Perseus complex. These H2 2.12 micron observations are complemented by broad-band K imaging, mid-IR imaging and photometry from the Spitzer Space Telescope, and published submillimetre CO J=3-2 maps of high-velocity molecular outflows. We detect and label 85 H2 features and associate these with 26 molecular outflows. Three are parsec-scale flows, with a mean flow lobe length exceeding 11.5 arcmin. 37 (44%) of the detected H2 features are associated with a known Herbig-Haro object, while 72 (46%) of catalogued HH objects are detected in H2 emission. Embedded Spitzer sources are identified for all but two of the 26 molecular outflows. These candidate outflow sources all have high near-to-mid-IR spectral indices (mean value of alpha ~ 1.4) as well as red IRAC 3.6-4.5 micron and IRAC/MIPS 4.5-24.0 micron colours: 80% have [3.6]-[4.5] > 1.0 and [4.5]-[24] > 1.5. These criteria - high alpha and red [4.5]-[24] and [3.6]-[4.5] colours - are powerful discriminants when searching for molecular outflow sources. However, we find no correlation between alpha and flow length or opening angle, and the outflows appear randomly orientated in each region. The more massive clouds are associated with a greater number of outflows, which suggests that the star formation efficiency is roughly the same in each region.


قيم البحث

اقرأ أيضاً

221 - Duy Cuong Nguyen 2011
We present the results of a multiplicity survey of 212 T Tauri stars in the Chamaeleon I and Taurus-Auriga star-forming regions, based on high-resolution spectra from the Magellan Clay 6.5 m telescope. From these data, we achieved a typical radial ve locity precision of ~80 m/s with slower rotators yielding better precision, in general. For 174 of these stars, we obtained multi-epoch data with sufficient time baselines to identify binaries based on radial velocity variations. We identified eight close binaries and four close triples, of which three and two, respectively, are new discoveries. The spectroscopic multiplicity fractions we find for Cha I (7%) and Tau-Aur (6%) are similar to each other, and to the results of field star surveys in the same mass and period regime. However, unlike the results from imaging surveys, the frequency of systems with close companions in our sample is not seen to depend on primary mass. Additionally, we do not find a strong correlation between accretion and close multiplicity. This implies that close companions are not likely the main source of the accretion shut down observed in weak-lined T Tauri stars. Our results also suggest that sufficient radial velocity precision can be achieved for at least a subset of slowly rotating young stars to search for hot Jupiter planets.
We present fundamental parameters for 110 canonical K- & M-type (1.3$-$0.13$M_odot$) Taurus-Auriga young stellar objects (YSOs). The analysis produces a simultaneous determination of effective temperature ($T_{rm eff}$), surface gravity ($log$ g), ma gnetic field strength (B), and projected rotational velocity ($v sin i$). Our method employed synthetic spectra and high-resolution (R$sim$45,000) near-infrared spectra taken with the Immersion GRating INfrared Spectrometer (IGRINS) to fit specific K-band spectral regions most sensitive to those parameters. The use of these high-resolution spectra reduces the influence of distance uncertainties, reddening, and non-photospheric continuum emission on the parameter determinations. The median total (fit + systematic) uncertainties were 170 K, 0.28 dex, 0.60 kG, 2.5 km s$^{-1}$ for $T_{rm eff}$, $log$ g, B, and $v sin i$, respectively. We determined B for 41 Taurus YSOs (upper limits for the remainder) and find systematic offsets (lower $T_{rm eff}$, higher $log$ g and $v sin i$) in parameters when B is measurable but not considered in the fit. The average $log$ g for the Class II and Class III objects differs by 0.23$pm$0.05dex, which is consistent with Class III objects being the more evolved members of the star-forming region. However, the dispersion in $log$ g is greater than the uncertainties, which highlights how the YSO classification correlates with age ($log$ g), yet there are exceptionally young (lower $log$ g) Class III YSOs and relatively old (higher $log$ g) Class II YSOs with unexplained evolutionary histories. The spectra from this work are provided in an online repository along with TW Hydrae Association (TWA) comparison objects and the model grid used in our analysis.
The Taurus-Auriga association and its associated molecular cloud are a benchmark population for studies of star and planet formation. The census of Taurus-Auriga has been assembled over seven decades and has inherited the biases, incompleteness, and systematic uncertainties of the input studies. The notably unusual shape of the inferred IMF and the existence of several isolated disk-bearing stars suggest that additional (likely disk-free) members might remain to be discovered. We therefore have begun a global reassessment of the membership of Taurus-Auriga that exploits new data and better definitions of youth and kinematic membership. As a first step, we reconsider the membership of all disk-free candidate members from the literature with spectral type $ge$F0, $3^h50^m<alpha<5^h40^m$, and $14^{circ}<delta<34^{circ}$. We combine data from the literature with Keck/HIRES and UH88/SNIFS spectra to test the membership of these candidates using HR diagram positions, proper motions, RVs, H$alpha$, lithium, and surface gravity. We find 218 confirmed or likely Taurus members, 160 confirmed or likely interlopers, and only 18 that still lack sufficient evidence to draw firm conclusions. A significant fraction of these stars (81/218=37%) are not included in the most recent canonical member lists. Intriguingly, there are few additional members in the immediate vicinity of the molecular clouds, preserving the IMFs that have been deemed anomalous in past work. Many of the likely Taurus members are distributed broadly across the search area. When combined with known disk hosts, our updated census reveals two regimes: a high-density population with a high disk fraction (indicative of youth) that broadly traces the molecular clouds, and a low-density population with low disk fraction (hence likely older) that most likely represents previous generations of star formation.
Aims: We search new T Tauri star (TTS) candidates with the mid-infrared (MIR) part of the AKARI All-Sky Survey at 9 and 18 um wavelengths. Methods: We used the point source catalogue (PSC), obtained by the Infrared Camera (IRC) on board AKARI. We com bined the 2MASS PSC and the 3rd version of the USNO CCD Astrograph Catalogue (UCAC) with the AKARI IRC-PSC, and surveyed 517 known TTSs over a 1800-square-degree part of the Taurus-Auriga region to find criteria to extract TTSs. We considered asymptotic giant branch (AGB) stars, post-AGB stars, Planetary Nebulae (PNe), and galaxies, which have similar MIR colours, to separate TTSs from these sources. Results: Of the 517 known TTSs, we detected 133 sources with AKARI. Based on the colour-colour and colour-magnitude diagrams made from the AKARI, 2MASS, and UCAC surveys, we propose the criteria to extract TTS candidates from the AKARI All-Sky data. On the basis of our criteria, we selected 176/14725 AKARI sources as TTS candidates which are located around the Taurus-Auriga region. Comparing these sources with SIMBAD, there are 148 previously identified sources including 115 Young Stellar Objects (YSOs), and 28 unidentified sources. Conclusions: Based on SIMBAD identifications, we take the TTS-identification probability using our criteria to be ~75 %. We find 28 TTS candidates, of which we expect 21 to be confirmed once follow-up observations can be obtained. Although the probability of ~75 % is not so high, it is affected by the completeness of the SIMBAD database, and we can search for TTSs over the whole sky, over all star forming regions.
Chemistry plays an important role in the structure and evolution of protoplanetary disks, with implications for the composition of comets and planets. This is the first of a series of papers based on data from DISCS, a Submillimeter Array survey of t he chemical composition of protoplanetary disks. The six Taurus sources in the program (DM Tau, AA Tau, LkCa 15, GM Aur, CQ Tau and MWC 480) range in stellar spectral type from M1 to A4 and offer an opportunity to test the effects of stellar luminosity on the disk chemistry. The disks were observed in 10 different lines at ~3 resolution and an rms of ~100 mJy beam-1 at ~0.5 km s-1. The four brightest lines are CO 2-1, HCO+ 3-2, CN 2_3-1_2 and HCN 3-2 and these are detected toward all sources (except for HCN toward CQ Tau). The weaker lines of CN 2_2-1_1, DCO+ 3-2, N2H+ 3-2, H2CO 3_03-2_02 and 4_14-3_13 are detected toward two to three disks each, and DCN 3-2 only toward LkCa 15. CH3OH 4_21-3_12 and c-C3H2 are not detected. There is no obvious difference between the T Tauri and Herbig Ae sources with regard to CN and HCN intensities. In contrast, DCO+, DCN, N2H+ and H2CO are detected only toward the T Tauri stars, suggesting that the disks around Herbig Ae stars lack cold regions for long enough timescales to allow for efficient deuterium chemistry, CO freeze-out, and grain chemistry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا