ترغب بنشر مسار تعليمي؟ اضغط هنا

Disk Imaging Survey of Chemistry with SMA (DISCS): I. Taurus Protoplanetary Disk Data

199   0   0.0 ( 0 )
 نشر من قبل Karin Oberg
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chemistry plays an important role in the structure and evolution of protoplanetary disks, with implications for the composition of comets and planets. This is the first of a series of papers based on data from DISCS, a Submillimeter Array survey of the chemical composition of protoplanetary disks. The six Taurus sources in the program (DM Tau, AA Tau, LkCa 15, GM Aur, CQ Tau and MWC 480) range in stellar spectral type from M1 to A4 and offer an opportunity to test the effects of stellar luminosity on the disk chemistry. The disks were observed in 10 different lines at ~3 resolution and an rms of ~100 mJy beam-1 at ~0.5 km s-1. The four brightest lines are CO 2-1, HCO+ 3-2, CN 2_3-1_2 and HCN 3-2 and these are detected toward all sources (except for HCN toward CQ Tau). The weaker lines of CN 2_2-1_1, DCO+ 3-2, N2H+ 3-2, H2CO 3_03-2_02 and 4_14-3_13 are detected toward two to three disks each, and DCN 3-2 only toward LkCa 15. CH3OH 4_21-3_12 and c-C3H2 are not detected. There is no obvious difference between the T Tauri and Herbig Ae sources with regard to CN and HCN intensities. In contrast, DCO+, DCN, N2H+ and H2CO are detected only toward the T Tauri stars, suggesting that the disks around Herbig Ae stars lack cold regions for long enough timescales to allow for efficient deuterium chemistry, CO freeze-out, and grain chemistry.

قيم البحث

اقرأ أيضاً

This is the second in a series of papers based on data from DISCS, a Submillimeter Array observing program aimed at spatially and spectrally resolving the chemical composition of 12 protoplanetary disks. We present data on six Southern sky sources - IM Lup, SAO 206462 (HD 135344b), HD 142527, AS 209, AS 205 and V4046 Sgr - which complement the six sources in the Taurus star forming region reported previously. CO 2-1 and HCO+ 3-2 emission are detected and resolved in all disks and show velocity patterns consistent with Keplerian rotation. Where detected, the emission from DCO+ 3-2, N2H+ 3-2, H2CO 3-2 and 4-3,HCN 3-2 and CN 2-1 are also generally spatially resolved. The detection rates are highest toward the M and K stars, while the F star SAO 206462 has only weak CN and HCN emission, and H2CO alone is detected toward HD 142527. These findings together with the statistics from the previous Taurus disks, support the hypothesis that high detection rates of many small molecules depend on the presence of a cold and protected disk midplane, which is less common around F and A stars compared to M and K stars. Disk-averaged variations in the proposed radiation tracer CN/HCN are found to be small, despite two orders of magnitude range of spectral types and accretion rates. In contrast, the resolved images suggest that the CN/HCN emission ratio varies with disk radius in at least two of the systems. There are no clear observational differences in the disk chemistry between the classical/full T Tauri disks and transitional disks. Furthermore, the observed line emission does not depend on measured accretion luminosities or the number of infrared lines detected, which suggests that the chemistry outside of 100 AU is not coupled to the physical processes that drive the chemistry in the innermost few AU.
104 - L. Podio , A. Garufi , C. Codella 2020
Planets form in protoplanetary disks and inherit their chemical composition. It is therefore crucial to understand the disks molecular content. We aim to characterize the distribution and abundance of molecules in the disk of DG Tau. In the context o f the ALMA chemical survey of Disk-Outflow sources in Taurus (ALMA-DOT) we analyse ALMA observations of the disk of DG Tau in H2CO 3(1,2)-2(1,1), CS 5-4, and CN 2-1 at ~0.15, i.e. ~18 au at 121 pc. H2CO and CS originate from a disk ring at the edge of the 1.3mm dust continuum, with CS probing an outer disk region with respect to H2CO (peaking at ~70 and ~60 au, respectively). CN originates from an outermost disk/envelope region peaking at ~80 au. H2CO is dominated by disk emission, while CS probes also two streams of material possibly accreting onto the disk with a peak of emission where the stream connects to the disk. The ring- and disk-height- averaged column densities are ~2.4-8.6e13 cm-2 (H2CO), ~1.7-2.5e13 cm-2 (CS), and ~1.9-4.7e13 cm-2 (CN). Unsharp masking reveals a ring of enhanced dust emission at ~40 au, i.e. just outside the CO snowline (~30 au). CS and H2CO emissions are co-spatial suggesting that they are chemically linked. The observed rings of molecular emission at the edge of the 1.3mm continuum may be due to dust opacity effects and/or continnum over-subtraction in the inner disk; as well as to increased UV penetration and/or temperature inversion at the edge of the mm-dust which would cause an enhanced gas-phase formation and desorption of these molecules. Moreover, H2CO and CS originate from outside the ring of enhanced dust emission, which also coincides with a change of the linear polarization at 0.87mm. This suggests that outside the CO snowline there could be a change of the dust properties which would reflect in the increase of the intensity (and change of polarization) of continuum, and of molecular emission.
With Herschel/PACS 134 low mass members of the Taurus star-forming region spanning the M4-L0 spectral type range and covering the transition from low mass stars to brown dwarfs were observed. Combining the new Herschel results with other programs, a total of 150 of the 154 M4-L0 Taurus members members have observations with Herschel. Among the 150 targets, 70um flux densities were measured for 7 of the 7 ClassI objects, 48 of the 67 ClassII members, and 3 of the 76 ClassIII targets. For the detected ClassII objects, the median 70um flux density level declines with spectral type, however, the distribution of excess relative to central object flux density does not change across the stellar/substellar boundary in the M4-L0 range. Connecting the 70um TBOSS values with the results from K0-M3 ClassII members results in the first comprehensive census of far-IR emission across the full mass spectrum of the stellar and substellar population of a star-forming region, and the median flux density declines with spectral type in a trend analogous to the flux density decline expected for the central objects. SEDs were constructed for all TBOSS targets covering the optical to far-IR range and extending to the submm/mm for a subset of sources. Based on an initial exploration of the impact of different physical parameters; inclination, scale height and flaring have the largest influence on the PACS flux densities. From the 24um to 70um spectral index of the SEDs, 5 new candidate transition disks were identified. The steep 24um to 70um slope for a subset of 8 TBOSS targets may be an indication of truncated disks in these systems.Two examples of mixed pair systems that include secondaries with disks were measured. Finally, comparing the TBOSS results with a Herschel study of Ophiuchus brown dwarfs reveals a lower fraction of disks around the Taurus substellar population.
H$_2$CO ice on dust grains is an important precursor of complex organic molecules (COMs). H$_2$CO gas can be readily observed in protoplanetary disks and may be used to trace COM chemistry. However, its utility as a COM probe is currently limited by a lack of constraints on the relative contributions of two different formation pathways: on icy grain-surfaces and in the gas-phase. We use archival ALMA observations of the resolved distribution of H$_2$CO emission in the disk around the young low-mass star DM Tau to assess the relative importance of these formation routes. The observed H$_2$CO emission has a centrally peaked and radially broad brightness profile (extending out to 500 AU). We compare these observations with disk chemistry models with and without grain-surface formation reactions, and find that both gas and grain-surface chemistry are necessary to explain the spatial distribution of the emission. Gas-phase H$_2$CO production is responsible for the observed central peak, while grain-surface chemistry is required to reproduce the emission exterior to the CO snowline (where H$_2$CO mainly forms through the hydrogenation of CO ice before being non-thermally desorbed). These observations demonstrate that both gas and grain-surface pathways contribute to the observed H$_2$CO in disks, and that their relative contributions depend strongly on distance from the host star.
(Abridged) Disks are observed around pre-main sequence stars, but how and when they form is still heavily debated. While disks around young stellar objects have been identified through thermal dust emission, spatially and spectrally resolved molecula r line observations are needed to determine their nature. We present subarcsecond observations of dust and gas toward four Class I low-mass young stellar objects in Taurus. The 13CO and C18O J=2-1 transitions at 220 GHz were observed with the Plateau de Bure Interferometer at a spatial resolution of ~0.8 and analyzed using uv-space position velocity diagrams to determine the nature of their observed velocity radient. Rotationally supported disks (RSDs) are detected around 3 of the 4 Class I sources studied. The derived masses identify them as Stage I objects; i.e., their stellar mass is higher than their envelope and disk masses. The outer radii of the Keplerian disks toward our sample of Class I sources are <~ 100 AU. The lack of on-source C18O emission for TMR1 puts an upper limit of 50 AU on its size. Flattened structures at radii > 100 AU around these sources are dominated by infalling motion (v propto r^-1). A large-scale envelope model is required to estimate the basic parameters of the flattened structure from spatially resolved continuum data. Similarities and differences between the gas and dust disk are discussed. Combined with literature data, the sizes of the RSDs around Class I objects are best described with evolutionary models with an initial rotation of 10^-14 Hz and slow sound speeds. Based on the comparison of gas and dust disk masses, little CO is frozen out within 100 AU in these disks. RSDs with radii up to 100 AU are present around Class I embedded objects. Larger surveys of both Class 0 and I objects are needed to determine whether most disks form late or early in the embedded phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا