ترغب بنشر مسار تعليمي؟ اضغط هنا

Coulomb blockade in two island systems with highly conductive junctions

74   0   0.0 ( 0 )
 نشر من قبل Roland Schaefer
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report measurements on single-electron pumps, consisting of two metallic islands formed by three tunnel junctions in series. We focus on the linear-response conductance as a function of gate voltage and temperature of three samples with varying system parameters. In all cases, strong quantum fluctuation phenomena are observed by a log(k_B T/(2 E_co)) reduction of the maximal conductance, where E_co measures the coupling strength between the islands. The samples display a rich phenomenology, culminating in a non-monotonic behavior of the maximal conductance as a function of temperature.



قيم البحث

اقرأ أيضاً

We report on a systematic study of the Coulomb blockade effects in nanofabricated narrow constrictions in thin (Ga,Mn)As films. Different low-temperature transport regimes have been observed for decreasing constriction sizes: the ohmic, the single el ectron tunnelling (SET) and a completely insulating regime. In the SET, complex stability diagrams with nested Coulomb diamonds and anomalous conductance suppression in the vicinity of charge degeneracy points have been observed. We rationalize these observations in the SET with a double ferromagnetic island model coupled to ferromagnetic leads. Its transport characteristics are analyzed in terms of a modified orthodox theory of Coulomb blockade which takes into account the energy dependence of the density of states in the metallic islands.
We consider the ground-state energy and the spectrum of the low-energy excitations of a Majorana island formed of topological superconductors connected by a single-mode junction of arbitrary transmission. Coulomb blockade results in $e$-periodic modu lation of the energies with the gate-induced charge. We find the amplitude of modulation as a function of reflection coefficient ${cal R}$. The amplitude scales as $sqrt{cal R}$ in the limit ${cal R}to 0$. At larger ${cal R}$, the dependence of the amplitude on the Josephson and charging energies is similar to that of a conventional-superconductor Cooper-pair box. The crossover value of ${cal R}$ is small and depends on the ratio of the charging energy to superconducting gap.
The simplicity of single-molecule junctions based on direct bonding of a small molecule between two metallic electrodes make them an ideal system for the study of fundamental questions related to molecular electronics. Here we study the conductance p roperties of six different molecules suspended between Pt electrodes. All the molecular junctions show a typical conductance of about 1G0 which is ascribed to the dominant role of the Pt contacts. However, despite the metallic-like conductivity, the individual molecular signature is well-expressed by the effect of molecular vibrations in the inelastic contribution to the conductance.
A mesoscopic Coulomb blockade system with two identical transport channels is studied in terms of full counting statistics. It is found that the average current cannot distinguish the quantum constructive interference from the classical non-interfere nce, but the shot noise and skewness are more sensitive to the nature of quantum mechanical interference and can fulfill that task. The interesting super-Poisson shot noise is found and is demonstrated as a consequence of constructive interference, which induces an effective system with fast-and-slow transport channels. Dephasing effects on the counting statistics are carried out to display the continuous transition from quantum interfering to non-interfering transports.
116 - M. Kiguchi , O. Tal , S. Wohlthat 2008
Highly conductive molecular junctions were formed by direct binding of benzene molecules between two Pt electrodes. Measurements of conductance, isotopic shift in inelastic spectroscopy and shot noise compared with calculations provide indications fo r a stable molecular junction where the benzene molecule is preserved intact and bonded to the Pt leads via carbon atoms. The junction has a conductance comparable to that for metallic atomic junctions (around 0.1-1 Go), where the conductance and the number of transmission channels are controlled by the molecules orientation at different inter-electrode distances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا