ﻻ يوجد ملخص باللغة العربية
Hodge classes on the moduli space of admissible covers with monodromy group G are associated to irreducible representations of G. We evaluate all linear Hodge integrals over moduli spaces of admissible covers with abelian monodromy in terms of multiplication in an associated wreath group algebra. In case G is cyclic and the representation is faithful, the evaluation is in terms of double Hurwitz numbers. In case G is trivial, the formula specializes to the well-known result of Ekedahl-Lando-Shapiro-Vainshtein for linear Hodge integrals over the moduli space of curves in terms of single Hurwitz numbers.
We start with a curve over an algebraically closed ground field of positive characteristic $p>0$. By using specialization techniques, under suitable natural coprimality conditions, we prove a cohomological Simpson Correspondence between the moduli sp
In this paper, we show that the generating function for linear Hodge integrals over moduli spaces of stable maps to a nonsingular projective variety $X$ can be connected to the generating function for Gromov-Witten invariants of $X$ by a series of di
We describe a sequence of effective divisors on the Hurwitz space $H_{d,g}$ for $d$ dividing $g-1$ and compute their cycle classes on a partial compactification. These divisors arise from vector bundles of syzygies canonically associated to a branche
Hurwitz spaces parameterizing covers of the Riemann sphere can be equipped with a Frobenius structure. In this review, we recall the construction of such Hurwitz Frobenius manifolds as well as the correspondence between semisimple Frobenius manifolds
In this paper we study the reduction of Galois covers of curves, from characteristic 0 to characteristic p. The starting point is a is a recent result of Raynaud which gives a criterion for good reduction for covers of the projective line branch at 3