ﻻ يوجد ملخص باللغة العربية
We describe a sequence of effective divisors on the Hurwitz space $H_{d,g}$ for $d$ dividing $g-1$ and compute their cycle classes on a partial compactification. These divisors arise from vector bundles of syzygies canonically associated to a branched cover. We find that the cycle classes are all proportional to each other.
The Maroni stratification on the Hurwitz space of degree $d$ covers of genus $g$ has a stratum that is a divisor only if $d-1$ divides $g$. Here we construct a stratification on the Hurwitz space that is analogous to the Maroni stratification, but ha
In char $k = p >0$, A. Langer proved a strong restriction theorem (in the style of H. Flenner) for semistable sheaves to a very general hypersurface of degree $d$, on certain varieties, with the condition that `char $k > d$. He remarked that to remov
It is a longstanding problem in Algebraic Geometry to determine whether the syzygy bundle $E_{d_1,...,d_n}$ on $mathbb{P}^N$ defined as the kernel of a general epimorphism [phi:mathcal{O}(-d_1)oplus...oplusmathcal{O}(-d_n) tomathcal{O}] is (semi)stab
In this paper we study the reduction of Galois covers of curves, from characteristic 0 to characteristic p. The starting point is a is a recent result of Raynaud which gives a criterion for good reduction for covers of the projective line branch at 3
In this short note, we extend the results of [Alexeev-Orlov, 2012] about Picard groups of Burniat surfaces with $K^2=6$ to the cases of $2le K^2le 5$. We also compute the semigroup of effective divisors on Burniat surfaces with $K^2=6$. Finally, we c