ﻻ يوجد ملخص باللغة العربية
Accelerated algorithms for simulating the morphological evolution of strained heteroeptiaxy based on a ball and spring lattice model in three dimensions are explained. We derive exact Greens function formalisms for boundary values in the associated lattice elasticity problems. The computational efficiency is further enhanced by using a superparticle surface coarsening approximation. Atomic hoppings simulating surface diffusion are sampled using a multi-step acceptance-rejection algorithm. It utilizes quick estimates of the atomic elastic energies from extensively tabulated values modulated by the local strain. A parameter controls the compromise between accuracy and efficiency of the acceptance-rejection algorithm.
The pyramid-to-dome transition in Ge$_{x}$Si$_{1-x}$ on Si(100) initiated by step bunching on pyramidal quantum dots is atomistically simulated using a novel multi-state lattice model incorporating effective surface reconstructions. Results are expla
The ground-state properties of spin-polarized tritium T$downarrow$ at zero temperature are obtained by means of diffusion Monte Carlo calculations. Using an accurate {em ab initio} T$downarrow$-T$downarrow$ interatomic potential we have studied its l
The magnetic properties of the one dimensional (1D) monatomic chain of Co reported in a previous experimental work are investigated by a classical Monte Carlo simulation based on the anisotropic Heisenberg model. In our simulation, the effect of the
We use Monte Carlo simulations to study ${rm Ni Fe_2O_4}$ nanoparticles. Finite size and surface effects differentiate them from their bulk counterparts. A continuous version of the Wang-Landau algorithm is used to calculate the joint density of stat
The confinement of critical fluctuations in soft media induces critical Casimir forces acting on the confining surfaces. The temperature and geometry dependences of such forces are characterized by universal scaling functions. A novel approach is pre