ﻻ يوجد ملخص باللغة العربية
The magnetic properties of the one dimensional (1D) monatomic chain of Co reported in a previous experimental work are investigated by a classical Monte Carlo simulation based on the anisotropic Heisenberg model. In our simulation, the effect of the on-site uniaxial anisotropy, Ku, on each individual Co atom and the nearest neighbour exchange interaction, J, are accounted for. The normalized coercivity HC(T)/HC(TCL) is found to show a universal behaviour, HC(T)/HC(TCL) = h0(e^{TB/T}-e) in the temperature interval, TCL < T < TBCal, arising from the thermal activation effect. In the above expression, h0 is a constant, TBCal is the blocking temperature determined by the calculation, and TCL is the temperature above which the classical Monte Carlo simulation gives a good description on the investigated system. The present simulation has reproduced the experimental features, including the temperature dependent coercivity, HC(T), and the angular dependence of the remanent magnetization, MR(phi,theta), upon the relative orientation (phi,theta) of the applied field H. In addition, the calculation reveals that the ferromagnetic-like open hysteresis loop is a result of a slow dynamical process at T < TBCal. The dependence of the dynamical TBCal on the field sweeping rate R, the on-site anisotropy constant Ku, and the number of atoms in the atomic chain, N, has been investigated in detail.
Accelerated algorithms for simulating the morphological evolution of strained heteroeptiaxy based on a ball and spring lattice model in three dimensions are explained. We derive exact Greens function formalisms for boundary values in the associated l
We study the dynamics of one-dimensional (1D) interacting particles simulated with the event-chain Monte Carlo algorithm (ECMC). We argue that previou
The ground-state properties of spin-polarized tritium T$downarrow$ at zero temperature are obtained by means of diffusion Monte Carlo calculations. Using an accurate {em ab initio} T$downarrow$-T$downarrow$ interatomic potential we have studied its l
The unusual thermodynamic properties of the Ising antiferromagnet supplemented with a ferromagnetic, mean-field term are outlined. This simple model is inspired by more realistic models of spin-crossover materials. The phase diagram is estimated usin
We use Monte Carlo simulations to study ${rm Ni Fe_2O_4}$ nanoparticles. Finite size and surface effects differentiate them from their bulk counterparts. A continuous version of the Wang-Landau algorithm is used to calculate the joint density of stat