ترغب بنشر مسار تعليمي؟ اضغط هنا

Frequency and Impact of Galaxy Mergers and Interactions over the last 7 Gyr

145   0   0.0 ( 0 )
 نشر من قبل Shardha Jogee
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Jogee




اسأل ChatGPT حول البحث

We explore the history and impact of galaxy mergers and interactions over z~0.24 to 0.80, based on HST ACS, Combo-17, and Spitzer 24 mu data of ~4500 galaxies in the GEMS survey. Using visual and quantitative parameters,we identify galaxies with strong distortions indicative of recent strong interactions and mergers versus normal galaxies (E/S0, Sa, Sb-Sc, Sd/Irr). Our results are: (1) The observed fraction F of strongly disturbed systems among high mass (M>=2.5E10 Msun) galaxies is ~9% to 12% in every Gyr bin over z~0.24 to 0.80. The corresponding merger rate is a few times 10^-4 galaxies Gyr-1 Mpc-3. The fraction F shows fair agreement with the merger fraction of mass ratio >=1:10 predicted by several LCDM-based simulations. (2) For M>=1E9 Msun systems, the average star formation rate (SFR) of strongly disturbed systems is only modestly enhanced with respect to normal galaxies, in agreement with recent simulations. In fact, over z~0.24 to 0.80, strongly disturbed systems only account for a small fraction (<~30%) of the total SFR density. This suggests that the behaviour of the cosmic SFR density over the last seven billion years is predominantly shaped by normal galaxies.

قيم البحث

اقرأ أيضاً

We present an analysis of the physical and dynamical states of two sets of EAGLE zoom simulations of galaxy haloes, one at high redshift ($z=2-3$) and the other at low redshift ($z=0$), with masses of $approx 10^{12} M_{odot}$. Our focus is how the c ircumgalactic medium (CGM) of these $L^*$ star-forming galaxies change over the last 10 Gyr. We find that the high-$z$ CGM is almost equally divided between the cool ($T<10^5$ K) and hot ($Tgeq 10^5$ K) phases, while the low-$z$ hot CGM phase contains $5times$ more mass. The high-$z$ hot CGM contains 60% more metals than the cool CGM, while the low-$z$ cool CGM contains 35% more metals than the hot CGM content. The metals are evenly distributed radially between the hot and cool phases throughout the high-$z$ CGM. At high $z$, the CGM volume is dominated by hot outflows, cool gas is mainly inflowing, but cool metals are flowing outward. At low $z$, the cool metals dominate the interior and the hot metals are more prevalent at larger radii. The low-$z$ cool CGM has tangential motions consistent with rotational support out to $0.2 R_{200}$, often exhibiting $r approx 40$ kpc disc-like structures. The low-$z$ hot CGM has several times greater angular momentum than the cool CGM, and a more flattened radial density profile than the high-$z$ hot CGM. This study verifies that, just as galaxies demonstrate significant evolutionary stages over cosmic time, the gaseous haloes surrounding them also undergo considerable changes of their own both in physical characteristics of density, temperature and metallicity, and dynamic properties of velocity and angular momentum.
We present the KMOS Galaxy Evolution Survey (KGES), a $K$-band Multi-Object Spectrograph (KMOS) study of the H$alpha$ and [NII] emission from 288 $K$ band-selected galaxies at $1.2 lesssim z lesssim 1.8$, with stellar masses in the range $log_{10}(M_ {*}/rm{M}_{odot})approx$9-11.5. In this paper, we describe the survey design, present the sample, and discuss the key properties of the KGES galaxies. We combine KGES with appropriately matched samples at lower redshifts from the KMOS Redshift One Spectroscopic Survey (KROSS) and the SAMI Galaxy Survey. Accounting for the effects of sample selection, data quality, and analysis techniques between surveys, we examine the kinematic characteristics and angular momentum content of star-forming galaxies at $zapprox1.5$, $approx1$ and $approx0$. We find that stellar mass, rather than redshift, most strongly correlates with the disc fraction amongst star-forming galaxies at $z lesssim 1.5$, observing only a modest increase in the prevalence of discs between $zapprox1.5$ and $zapprox0.04$ at fixed stellar mass. Furthermore, typical star-forming galaxies follow the same median relation between specific angular momentum and stellar mass, regardless of their redshift, with the normalisation of the relation depending more strongly on how disc-like a galaxys kinematics are. This suggests that massive star-forming discs form in a very similar manner across the $approx$ 10 Gyr encompassed by our study and that the inferred link between the angular momentum of galaxies and their haloes does not change significantly across the stellar mass and redshift ranges probed in this work.
We present a study of the colors, structural properties, and star formation histories for a sample of ~1600 dwarfs over look-back times of ~3 Gyr (z=0.002-0.25). The sample consists of 401 distant dwarfs drawn from the Galaxy Evolution from Morpholog ies and SEDs (GEMS) survey, which provides high resolution Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) images and accurate redshifts, and of 1291 dwarfs at 10-90 Mpc compiled from the Sloan Digitized Sky Survey (SDSS). The sample is complete down to an effective surface brightness of 22 mag arcsec^-2 in z and includes dwarfs with M_g=-18.5 to -14 mag. Rest-frame luminosities in Johnson UBV and SDSS ugr filters are provided by the COMBO-17 survey and structural parameters have been determined by Sersic fits. We find that the GEMS dwarfs are bluer than the SDSS dwarfs by ~0.13 mag in g-r, which is consistent with the color evolution over ~2 Gyr of star formation histories involving moderate starbursts and long periods of continuous star formation. The full color range of the samples cannot be reproduced by single starbursts of different masses or long periods of continuous star formation alone. Furthermore, an estimate of the mechanical luminosities needed for the gas in the GEMS dwarfs to be completely removed from the galaxies shows that a significant number of low luminosity dwarfs are susceptible to such a complete gas loss, if they would experience a starburst. On the other hand, a large fraction of more luminous dwarfs is likely to retain their gas. We also estimate the star formation rates per unit area for the GEMS dwarfs and find good agreement with the values for local dwarfs.
Brightest Cluster Galaxies (BCGs) might have been assembled relatively late (z<1) via mergers. By exploiting the high-resolution HST/ACS imaging, we find four BCGs (COSMOS-P 125516, 102810, 036694 and 089357) in major dry merging in 29 X-ray clusters at $0.3 le z le 0.6$ in the Cosmological Evolutionary Survey (COSMOS). These BCGs show prominent but quiescent double nuclei with a magnitude difference of $delta m<1.5$ and a projected separation of $r_p<$ 10 kpc. Clear signatures of interaction such as extended plumes and/or significant asymmetries are also observed in their residual images. We infer a major merger rate of $0.55pm0.27$ merger per Gyr at $zsim0.43$ assuming the merger time-scale estimate of Kitzbichler & White (2008). This inferred rate is significantly higher than the rate in the local Universe ($0.12pm0.03$ at $zsim0.07$) presented in Liu et al. (2009). We estimate that present-day BCGs increase their luminosity (mass) by $sim35pm15$ per cent $(f_{mass}/0.5)$ via major dry mergers since $z=0.6$, where $f_{mass}$ is the mean mass fraction of companion galaxies accreted onto the central ones. Although the statistical uncertainty due to our small sample size is relatively large, our finding is consistent with both recent observational and theoretical results. Furthermore, in conjunction with our previous findings in Liu et al. (2009), the discovery of these intermediate-redshift merging BCGs is clear evidence of ongoing assembly of BCGs via major dry mergers over the last $sim$6 Gyr.
104 - Alfred L. Tiley 2018
We analyse maps of the spatially-resolved nebular emission of $approx$1500 star-forming galaxies at $zapprox0.6$-$2.2$ from deep KMOS and MUSE observations to measure the average shape of their rotation curves. We use these to test claims for declini ng rotation curves at large radii in galaxies at $zapprox1$-$2$ that have been interpreted as evidence for an absence of dark matter. We show that the shape of the average rotation curves, and the extent to which they decline beyond their peak velocities, depends upon the normalisation prescription used to construct the average curve. Normalising in size by the galaxy stellar disk-scale length after accounting for seeing effects ($R_{rm{d}}^{prime}$), we construct stacked position-velocity diagrams that trace the average galaxy rotation curve out to $6R_{rm{d}}^{prime}$ ($approx$13 kpc, on average). Combining these curves with average HI rotation curves for local systems, we investigate how the shapes of galaxy rotation curves evolve over $approx$10 Gyr. The average rotation curve for galaxies binned in stellar mass, stellar surface mass density and/or redshift is approximately flat, or continues to rise, out to at least $6R_{rm{d}}^{prime}$. We find a trend between the outer slopes of galaxies rotation curves and their stellar mass surface densities, with the higher surface density systems exhibiting flatter rotation curves. Drawing comparisons with hydrodynamical simulations, we show that the average shapes of the rotation curves for our sample of massive, star-forming galaxies at $zapprox0$-$2.2$ are consistent with those expected from $Lambda$CDM theory and imply dark matter fractions within $6R_{rm{d}}$ of at least $approx60$ percent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا