ترغب بنشر مسار تعليمي؟ اضغط هنا

The changing circumgalactic medium over the last 10 Gyr I: physical and dynamical properties

57   0   0.0 ( 0 )
 نشر من قبل Benjamin Oppenheimer
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of the physical and dynamical states of two sets of EAGLE zoom simulations of galaxy haloes, one at high redshift ($z=2-3$) and the other at low redshift ($z=0$), with masses of $approx 10^{12} M_{odot}$. Our focus is how the circumgalactic medium (CGM) of these $L^*$ star-forming galaxies change over the last 10 Gyr. We find that the high-$z$ CGM is almost equally divided between the cool ($T<10^5$ K) and hot ($Tgeq 10^5$ K) phases, while the low-$z$ hot CGM phase contains $5times$ more mass. The high-$z$ hot CGM contains 60% more metals than the cool CGM, while the low-$z$ cool CGM contains 35% more metals than the hot CGM content. The metals are evenly distributed radially between the hot and cool phases throughout the high-$z$ CGM. At high $z$, the CGM volume is dominated by hot outflows, cool gas is mainly inflowing, but cool metals are flowing outward. At low $z$, the cool metals dominate the interior and the hot metals are more prevalent at larger radii. The low-$z$ cool CGM has tangential motions consistent with rotational support out to $0.2 R_{200}$, often exhibiting $r approx 40$ kpc disc-like structures. The low-$z$ hot CGM has several times greater angular momentum than the cool CGM, and a more flattened radial density profile than the high-$z$ hot CGM. This study verifies that, just as galaxies demonstrate significant evolutionary stages over cosmic time, the gaseous haloes surrounding them also undergo considerable changes of their own both in physical characteristics of density, temperature and metallicity, and dynamic properties of velocity and angular momentum.



قيم البحث

اقرأ أيضاً

The intergalactic medium (IGM) is the dominant reservoir of baryons at all cosmic epochs. We investigate the evolution of the IGM from z=2-0 in 48 Mpc/h, 110-million particle cosmological hydrodynamic simulations using three prescriptions for galacti c outflows. We focus on the evolution of IGM physical properties, and how such properties are traced by Ly-alpha absorption as detectable using HST/COS. Our results broadly confirm the canonical picture that most Ly-alpha absorbers arise from highly ionized gas tracing filamentary large-scale structure. Growth of structure causes gas to move from the diffuse photoionized IGM into other cosmic phases, namely stars, cold and hot gas within galaxy halos, and the unbound and shock-heated warm-hot intergalactic medium (WHIM). By today, baryons are roughly equally divided between bound phases (35%), the diffuse IGM (41%), and the WHIM (24%). Here we (re)define the WHIM as gas with overdensities lower than that in halos and temperatures >10^5 K, in order to more closely align it with missing baryons. When we tune our photoionizing background to match the observed evolution of the Ly-alpha mean flux decrement, we obtain a line count evolution that broadly agrees with available data. We predict a column density distribution slope of -1.70 for our favored momentum-driven wind model, in agreement with recent observations, and it becomes shallower with redshift. With improved statistics, the frequency of strong lines can be a valuable diagnostic of outflows, and our favored wind model matches existing data best among our models. The relationship between column density and physical density is fairly tight from z=2-0, and evolves as rho N_HI^0.74 10^(-0.37z) for diffuse absorbers. Linewidths only loosely reflect the temperature of the absorbing gas, which will hamper attempts to quantify the WHIM using broad Ly-alpha absorbers. [Abridged]
104 - Alfred L. Tiley 2018
We analyse maps of the spatially-resolved nebular emission of $approx$1500 star-forming galaxies at $zapprox0.6$-$2.2$ from deep KMOS and MUSE observations to measure the average shape of their rotation curves. We use these to test claims for declini ng rotation curves at large radii in galaxies at $zapprox1$-$2$ that have been interpreted as evidence for an absence of dark matter. We show that the shape of the average rotation curves, and the extent to which they decline beyond their peak velocities, depends upon the normalisation prescription used to construct the average curve. Normalising in size by the galaxy stellar disk-scale length after accounting for seeing effects ($R_{rm{d}}^{prime}$), we construct stacked position-velocity diagrams that trace the average galaxy rotation curve out to $6R_{rm{d}}^{prime}$ ($approx$13 kpc, on average). Combining these curves with average HI rotation curves for local systems, we investigate how the shapes of galaxy rotation curves evolve over $approx$10 Gyr. The average rotation curve for galaxies binned in stellar mass, stellar surface mass density and/or redshift is approximately flat, or continues to rise, out to at least $6R_{rm{d}}^{prime}$. We find a trend between the outer slopes of galaxies rotation curves and their stellar mass surface densities, with the higher surface density systems exhibiting flatter rotation curves. Drawing comparisons with hydrodynamical simulations, we show that the average shapes of the rotation curves for our sample of massive, star-forming galaxies at $zapprox0$-$2.2$ are consistent with those expected from $Lambda$CDM theory and imply dark matter fractions within $6R_{rm{d}}$ of at least $approx60$ percent.
We present the KMOS Galaxy Evolution Survey (KGES), a $K$-band Multi-Object Spectrograph (KMOS) study of the H$alpha$ and [NII] emission from 288 $K$ band-selected galaxies at $1.2 lesssim z lesssim 1.8$, with stellar masses in the range $log_{10}(M_ {*}/rm{M}_{odot})approx$9-11.5. In this paper, we describe the survey design, present the sample, and discuss the key properties of the KGES galaxies. We combine KGES with appropriately matched samples at lower redshifts from the KMOS Redshift One Spectroscopic Survey (KROSS) and the SAMI Galaxy Survey. Accounting for the effects of sample selection, data quality, and analysis techniques between surveys, we examine the kinematic characteristics and angular momentum content of star-forming galaxies at $zapprox1.5$, $approx1$ and $approx0$. We find that stellar mass, rather than redshift, most strongly correlates with the disc fraction amongst star-forming galaxies at $z lesssim 1.5$, observing only a modest increase in the prevalence of discs between $zapprox1.5$ and $zapprox0.04$ at fixed stellar mass. Furthermore, typical star-forming galaxies follow the same median relation between specific angular momentum and stellar mass, regardless of their redshift, with the normalisation of the relation depending more strongly on how disc-like a galaxys kinematics are. This suggests that massive star-forming discs form in a very similar manner across the $approx$ 10 Gyr encompassed by our study and that the inferred link between the angular momentum of galaxies and their haloes does not change significantly across the stellar mass and redshift ranges probed in this work.
The circumgalactic medium (CGM) of galaxies serves as a record of the influences of outflows and accretion that drive the evolution of galaxies. Feedback from star formation drives outflows that carry mass and metals away from galaxies to the CGM, wh ile infall from the intergalactic medium (IGM) is thought to bring in fresh gas to fuel star formation. Such exchanges of matter between IGM-CGM-galaxies have proven critical to producing galaxy scaling relations in cosmological simulations that match observations. However, the nature of these processes, of the physics that drives outflows and accretion, and their evolution with cosmic time are not fully characterized. One approach to constraining these processes is to characterize the metal enrichment of gas around and beyond galaxies. Measurements of the metallicity distribution functions of CGM/IGM gas over cosmic time provide independent tests of cosmological simulations. We have made great progress over the last decade as direct result of a very sensitive, high-resolution space-based UV spectrograph and the rise of ground-based spectroscopic archives. We argue the next transformative leap to track CGM/IGM metals during the epoch of galaxy formation and transformation into quiescent galaxies will require 1) a larger space telescope with an even more sensitive high-resolution spectrograph covering both the far- and near-UV (1,000-3,000 AA); and 2) ground-based archives housing science-ready data.
This article is based on an invited talk given by V. P. Kulkarni at the 8th Cosmic Dust meeting. Dust has a profound effect on the physics and chemistry of the interstellar gas in galaxies and on the appearance of galaxies. Understanding the cosmic e volution of dust with time is therefore crucial for understanding the evolution of galaxies. Despite the importance of interstellar dust, very little is known about its nature and composition in distant galaxies. We summarize the results of our ongoing programs using observations of distant quasars to obtain better constraints on dust grains in foreground galaxies that happen to lie along the quasar sightlines. These observations consist of a combination of mid-infrared data obtained with the Spitzer Space Telescope and optical/UV data obtained with ground-based telescopes and/or the Hubble Space Telescope. The mid-IR data target the 10 $mu$m and 18 $mu$m silicate absorption features, while the optical/UV data allow determinations of element depletions, extinction curves, 2175 {AA} bumps, etc. Measurements of such properties in absorption-selected galaxies with redshifts ranging from $zsim0$ to $z>2$ provide constraints on the evolution of interstellar dust over the past $> 10$ Gyr. The optical depth of the 10 $mu$m silicate absorption feature ($tau_{10}$) in these galaxies is correlated with the amount of reddening along the sightline. But there are indications [e.g., based on the $tau_{10}$ /$E(B-V)$ ratio and possible grain crystallinity] that the dust in these distant galaxies differs in structure and composition from the dust in the Milky Way and the Magellanic Clouds. We briefly discuss the implications of these results for the evolution of galaxies and their star formation history.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا