ترغب بنشر مسار تعليمي؟ اضغط هنا

Color, Structure, and Star Formation History of Dwarf Galaxies over the last ~3 Gyr with GEMS and SDSS

63   0   0.0 ( 0 )
 نشر من قبل Fabio D. Barazza
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the colors, structural properties, and star formation histories for a sample of ~1600 dwarfs over look-back times of ~3 Gyr (z=0.002-0.25). The sample consists of 401 distant dwarfs drawn from the Galaxy Evolution from Morphologies and SEDs (GEMS) survey, which provides high resolution Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) images and accurate redshifts, and of 1291 dwarfs at 10-90 Mpc compiled from the Sloan Digitized Sky Survey (SDSS). The sample is complete down to an effective surface brightness of 22 mag arcsec^-2 in z and includes dwarfs with M_g=-18.5 to -14 mag. Rest-frame luminosities in Johnson UBV and SDSS ugr filters are provided by the COMBO-17 survey and structural parameters have been determined by Sersic fits. We find that the GEMS dwarfs are bluer than the SDSS dwarfs by ~0.13 mag in g-r, which is consistent with the color evolution over ~2 Gyr of star formation histories involving moderate starbursts and long periods of continuous star formation. The full color range of the samples cannot be reproduced by single starbursts of different masses or long periods of continuous star formation alone. Furthermore, an estimate of the mechanical luminosities needed for the gas in the GEMS dwarfs to be completely removed from the galaxies shows that a significant number of low luminosity dwarfs are susceptible to such a complete gas loss, if they would experience a starburst. On the other hand, a large fraction of more luminous dwarfs is likely to retain their gas. We also estimate the star formation rates per unit area for the GEMS dwarfs and find good agreement with the values for local dwarfs.

قيم البحث

اقرأ أيضاً

We study the colors, structural properties, and star formation histories of a sample of ~1600 dwarfs over look-back times of ~3 Gyr (z=0.002-0.25). The sample consists of 401 distant dwarfs drawn from the Galaxy Evolution from Morphologies and SEDs ( GEMS) survey, which provides high resolution Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) images and accurate redshifts, and of 1291 dwarfs at 10-90 Mpc compiled from the Sloan Digitized Sky Survey (SDSS). We find that the GEMS dwarfs are bluer than the SDSS dwarfs, which is consistent with star formation histories involving starbursts and periods of continuous star formation. The full range of colors cannot be reproduced by single starbursts or constant star formation alone. We derive the star formation rates of the GEMS dwarfs and estimate the mechanical luminosities needed for a complete removal of their gas. We find that a large fraction of luminous dwarfs are likely to retain their gas, whereas fainter dwarfs are susceptible to a significant gas loss, if they would experience a starburst.
Star Formation Histories (SFHs) reveal physical processes that influence how galaxies form their stellar mass. We compare the SFHs of a sample of 36 nearby (D $leq$ 4 Mpc) dwarf galaxies from the ACS Nearby Galaxy Survey Treasury (ANGST), inferred fr om the Color Magnitude Diagrams (CMDs) of individually resolved stars in these galaxies, with those reconstructed by broad-band Spectral Energy Distribution (SED) fitting using the Dense Basis SED fitting code. When comparing individual SFHs, we introduce metrics for evaluating SFH reconstruction techniques. For both the SED and CMD methods, the median normalized SFH of galaxies in the sample shows a period of quiescence at lookback times of 3-6 Gyr followed by rejuvenated star formation over the past 3 Gyr that remains active until the present day. To determine if these represent special epochs of star formation in the D $leq$ 4 Mpc portion of the Local Volume, we break this ANGST dwarf galaxy sample into subsets based on specific star formation rate and spatial location. Modulo offsets between the methods of about 1 Gyr, all subsets show significant decreases and increases in their median normalized SFHs at the same epochs, and the majority of the individual galaxy SFHs are consistent with these trends. These results motivate further study of potential synchronized star formation quiescence and rejuvenation in the Local Volume as well as development of a hybrid method of SFH reconstruction that combines CMDs and SEDs, which have complementary systematics.
104 - Alfred L. Tiley 2018
We analyse maps of the spatially-resolved nebular emission of $approx$1500 star-forming galaxies at $zapprox0.6$-$2.2$ from deep KMOS and MUSE observations to measure the average shape of their rotation curves. We use these to test claims for declini ng rotation curves at large radii in galaxies at $zapprox1$-$2$ that have been interpreted as evidence for an absence of dark matter. We show that the shape of the average rotation curves, and the extent to which they decline beyond their peak velocities, depends upon the normalisation prescription used to construct the average curve. Normalising in size by the galaxy stellar disk-scale length after accounting for seeing effects ($R_{rm{d}}^{prime}$), we construct stacked position-velocity diagrams that trace the average galaxy rotation curve out to $6R_{rm{d}}^{prime}$ ($approx$13 kpc, on average). Combining these curves with average HI rotation curves for local systems, we investigate how the shapes of galaxy rotation curves evolve over $approx$10 Gyr. The average rotation curve for galaxies binned in stellar mass, stellar surface mass density and/or redshift is approximately flat, or continues to rise, out to at least $6R_{rm{d}}^{prime}$. We find a trend between the outer slopes of galaxies rotation curves and their stellar mass surface densities, with the higher surface density systems exhibiting flatter rotation curves. Drawing comparisons with hydrodynamical simulations, we show that the average shapes of the rotation curves for our sample of massive, star-forming galaxies at $zapprox0$-$2.2$ are consistent with those expected from $Lambda$CDM theory and imply dark matter fractions within $6R_{rm{d}}$ of at least $approx60$ percent.
We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The resulting color-magnitude diagram (CMD) reaches more than a magnitu de below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ~10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ~10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ~2). The star formation rate increased dramatically ~6-8 Gyr ago (z ~ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M(HI)/M(stellar), dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.
We compare the cosmic evolution of star formation rates in galaxies with that of their neutral hydrogen densities. We highlight the need for neutral hydrogen to be continually replenished from a reservoir of ionized gas to maintain the observed star formation rates in galaxies. Hydrodynamic simulations indicate that the replenishment may occur naturally through gas infall, although measured rates of gas infall in nearby galaxies are insufficient to match consumption. We identify an alternative mechanism for this replenishment, associated with expanding supershells within galaxies. Pre-existing ionized gas can cool and recombine efficiently in the walls of supershells, molecular gas can form in situ in shell walls, and shells can compress pre-existing molecular clouds to trigger collapse and star formation. We show that this mechanism provides replenishment rates sufficient to maintain both the observed HI mass density and the inferred molecular gas mass density over the redshift range 0<z<5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا