ترغب بنشر مسار تعليمي؟ اضغط هنا

Indications for 3 Mpc-scale large-scale structure associated with an X-ray luminous cluster of galaxies at z=0.95

56   0   0.0 ( 0 )
 نشر من قبل Rene Fassbender
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray luminous clusters of galaxies at z~1 are emerging as major cosmological probes and are fundamental tools to study the cosmic large-scale structure and environmental effects of galaxy evolution at large look-back times. We present details of the newly-discovered galaxy cluster XMMU J0104.4-0630 at z=0.947 and a probable associated system in the LSS environment. The clusters were found in a systematic study for high-redshift systems using deep archival XMM-Newton data for the serendipitous detection and the X-ray analysis, complemented by optical/NIR imaging observations and spectroscopy of the main cluster. We find a well-evolved, intermediate luminosity cluster with Lx=(6.4+-1.3)x10^43 erg/s (0.5-2.0 keV) and strong central 1.4 GHz radio emission. The cluster galaxy population exhibits a pronounced transition toward bluer colors at cluster-centric distances of 1-2 core radii, consistent with an age difference of 1-2 Gyr for a single burst solar metallicity model. The second, less evolved X-ray cluster at a projected distance of 6.4 arcmin (~3 Mpc) and a concordant red-sequence color likely forms a cluster-cluster bridge with the main target as part of its surrounding large-scale structure at z~0.95.

قيم البحث

اقرأ أيضاً

We have made a statistically complete, unbiased survey of C IV systems toward a region of high QSO density near the South Galactic Pole using 25 lines of sight spanning $1.5<z<2.8$. Such a survey makes an excellent probe of large-scale structure at e arly epochs. We find evidence for structure on the $15-35h^{-1}$ proper Mpc scale ($H_0 equiv 100$ km $s^{-1}$ Mpc${-1}$) as determined by the two point C IV - C IV absorber correlation function, and reject the null hypothesis that C IV systems are distributed randomly on such scales at the $sim 3.5sigma$ level. The structure likely reflects the distance between two groups of absorbers subtending $sim~ 13 times 5 times 21h^{-3}$ and $sim 7 times 1 times 15h^{-3}$ Mpc$^3$ at $zsim 2.3$ and $z sim 2.5$ respectively. There is also a marginal trend for the association of high rest equivalent width C IV absorbers and QSOs at similar redshifts but along different lines of sight. The total number of C IV systems detected is consistent with that which would be expected based on a survey using many widely separated lines of sight. Using the same data, we also find 11 Mg II absorbers in a complete survey toward 24 lines of sight; there is no evidence for Mg II - Mg II or Mg II - QSO clustering, though the sample size is likely still small to detect such structure if it exists.
We report the discovery of a massive, X-ray-luminous cluster of galaxies at z=1.393, the most distant X-ray-selected cluster found to date. XMMU J2235.3-2557 was serendipitously detected as an extended X-ray source in an archival XMM-Newton observati on of NGC 7314. VLT-FORS2 R and z band snapshot imaging reveals an over-density of red galaxies in both angular and color spaces. The galaxy enhancement is coincident in the sky with the X-ray emission; the cluster red sequence at R-z ~ 2.1 identifies it as a high-redshift candidate. Subsequent VLT-FORS2 multi-object spectroscopy unambiguously confirms the presence of a massive cluster based on 12 concordant redshifts in the interval 1.38<z<1.40. The preliminary cluster velocity dispersion is 762+/-265 km/s. VLT-ISAAC Ks and J band images underscore the rich distribution of red galaxies associated with the cluster. Based on a 45 ks XMM-Newton observation, we find the cluster has an aperture-corrected, unabsorbed X-ray flux of f_X = (3.6 +/- 0.3) x 10^{-14} erg/cm^2/s, a rest-frame X-ray luminosity of L_X = (3.0 +/- 0.2) x 10^{44} h_70^{-2} erg/s (0.5--2.0 keV), and a temperature of kT=6.0 (+2.5, -1.8) keV. Though XMMU J2235.3-2557 is likely the first confirmed z>1 cluster found with XMM-Newton, the relative ease and efficiency of discovery demonstrates that it should be possible to build large samples of z>1 clusters through the joint use of X-ray and large, ground-based telescopes.
We use the presently observed number density of large X-ray clusters and linear mass power spectra to constrain the shape parameter ($Gamma$), the spectral index ($n$), the amplitude of matter density perturbations on the scale of $8 h^{-1}$Mpc ($sig ma_8$), and the redshift distortion parameter ($beta$). The non-spherical-collapse model as an improvement to the Press-Schechter formula is used and yields significantly lower $sigma_8$ and $beta$. An analytical formalism for the formation redshift of halos is also derived.
By obtaining imaging data in two photometric bands for 60 lenticular galaxies - members of 8 southern clusters - with the Las Cumbres Observatory one-meter telescope network, we have analyzed the structure of their large-scale stellar disks. The para meters of radial surface-brightness profiles have been determined (including also disk thickness), and all the galaxies have been classified into pure exponential (Type I) disk surface-brightness profiles, truncated (Type II) and antitruncated (Type III) piecewise exponential disk surface-brightness profiles. We confirm the previous results of some other authors that the proportion of surface-brightness profile types is very different in environments of different density: in the clusters the Type-II profiles are almost absent while according to the literature data, in the field they constitute about one quarter of all lenticular galaxies. The Type-III profiles are equally presented in the clusters and in the field, while following similar scaling relations; but by undertaking an additional structural analysis including the disk thickness determination we note that some Type-III disks may be a combination of a rather thick exponential pseudobulge and an outer Type-I disk. Marginally we detect a shift of the scaling relation toward higher central surface brightnesses for the outer segments of Type-III disks and smaller thickness of the Type-I disks in the clusters. Both effects may be explained by enhanced radial stellar migration during disk galaxy infall into a cluster that in particular represents an additional channel for Type-I disk shaping in dense environments.
81 - Inger Jorgensen 2004
We present a study of the stellar populations of galaxies in the cluster RXJ0152.7-1357 at a redshift of 0.83. The study is based on new high S/N spectroscopy of 29 cluster members covering the wavelength range 5000-10000A as well as riz photometry o f the cluster. The scaling relations between velocity dispersions, luminosities and Balmer line strengths appear to be in agreement with pure passive evolution of the stellar populations with a formation redshift z=4. However, the strengths of the D4000 indices and the metal indices do not support this interpretation. Compared to z=0, the metal indices (C4668, Fe4383, CN3883, G4300 and CN2) show that at least half of the non-emission line galaxies in RXJ0152.7-1357 have [alpha/Fe] of 0.2 dex higher, and about half of the galaxies have significantly lower metal content. The differences in stellar populations of the galaxies are associated with the location of the galaxies relative to the X-ray emission. The galaxies with weak C4668 and G4300, as well as galaxies with weak [OII] emission, are located in areas of low X-ray luminosity. It is possible that these galaxies are experiencing the effect of the cluster merger taking place in RXJ0152.7-1357 as (short) episodes of star formation, while the galaxies in the cores of the X-ray sub-clumps are unaffected by the merger. The spectroscopy of the RXJ0152.7-1357 galaxies shows for the first time galaxies in a rich cluster at intermediate redshift that cannot evolve passively into the present day galaxy population in rich clusters. Additional physical processes may be at work and we speculate that merging with infalling (disk) galaxies in which stars have formed over an extended period might produce the required reduction in [alpha/Fe]. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا