ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of an X-ray-Luminous Galaxy Cluster at z=1.4

64   0   0.0 ( 0 )
 نشر من قبل C. R. Mullis
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a massive, X-ray-luminous cluster of galaxies at z=1.393, the most distant X-ray-selected cluster found to date. XMMU J2235.3-2557 was serendipitously detected as an extended X-ray source in an archival XMM-Newton observation of NGC 7314. VLT-FORS2 R and z band snapshot imaging reveals an over-density of red galaxies in both angular and color spaces. The galaxy enhancement is coincident in the sky with the X-ray emission; the cluster red sequence at R-z ~ 2.1 identifies it as a high-redshift candidate. Subsequent VLT-FORS2 multi-object spectroscopy unambiguously confirms the presence of a massive cluster based on 12 concordant redshifts in the interval 1.38<z<1.40. The preliminary cluster velocity dispersion is 762+/-265 km/s. VLT-ISAAC Ks and J band images underscore the rich distribution of red galaxies associated with the cluster. Based on a 45 ks XMM-Newton observation, we find the cluster has an aperture-corrected, unabsorbed X-ray flux of f_X = (3.6 +/- 0.3) x 10^{-14} erg/cm^2/s, a rest-frame X-ray luminosity of L_X = (3.0 +/- 0.2) x 10^{44} h_70^{-2} erg/s (0.5--2.0 keV), and a temperature of kT=6.0 (+2.5, -1.8) keV. Though XMMU J2235.3-2557 is likely the first confirmed z>1 cluster found with XMM-Newton, the relative ease and efficiency of discovery demonstrates that it should be possible to build large samples of z>1 clusters through the joint use of X-ray and large, ground-based telescopes.



قيم البحث

اقرأ أيضاً

145 - Joana S. Santos 2011
We report on the discovery of a very distant galaxy cluster serendipitously detected in the archive of the XMM-Newton mission, within the scope of the XMM-Newton Distant Cluster Project (XDCP). XMMUJ0044.0-2033 was detected at a high significance lev el (5sigma) as a compact, but significantly extended source in the X-ray data, with a soft-band flux f(r<40)=(1.5+-0.3)x10^(-14) erg/s/cm2. Optical/NIR follow-up observations confirmed the presence of an overdensity of red galaxies matching the X-ray emission. The cluster was spectroscopically confirmed to be at z=1.579 using ground-based VLT/FORS2 spectroscopy. The analysis of the I-H colour-magnitude diagram shows a sequence of red galaxies with a colour range [3.7 < I-H < 4.6] within 1 from the cluster X-ray emission peak. However, the three spectroscopic members (all with complex morphology) have significantly bluer colours relative to the observed red-sequence. In addition, two of the three cluster members have [OII] emission, indicative of on-going star formation. Using the spectroscopic redshift we estimated the X-ray bolometric luminosity, Lbol = 5.8x10^44 erg/s, implying a massive galaxy cluster. This places XMMU J0044.0-2033 at the forefront of massive distant clusters, closing the gap between lower redshift systems and recently discovered proto- and low-mass clusters at z >1.6.
57 - Jordi Barr 2005
We present a photometric and spectroscopic study of stellar populations in the X-ray-luminous cluster of galaxies RXJ0142.0+2131 at z=0.280. This paper analyses the results of high signal-to-noise spectroscopy, as well as g-, r-, and i-band imaging, using the Gemini Multi-Object Spectrograph on Gemini North. Of 43 spectroscopic targets, we find 30 cluster members over a range in color. Central velocity dispersions and absorption-line strengths for lines in the range 3700A < lambda_rest < 5800A are derived for cluster members, and are compared with a low-redshift sample of cluster galaxies, and single stellar population (SSP) models. We use a combination of these indicators to estimate luminosity-weighted mean ages, metallicities ([M/H]), and alpha-element abundance ratios ([alpha/Fe]). RXJ0142.0+2131 is a relatively poor cluster and lacks galaxies with high central velocity dispersions. Although the red sequence and the Faber-Jackson relation are consistent with pure passive evolution of the early-type population with a formation redshift of z_form = 2, the strengths of the 4000A break and scaling relations between metal line indices and velocity dispersion reject this model with high significance. By inverting SSP models for the Hbeta_G, Mgb, and <Fe> line indices, we calculate that, at a given velocity dispersion and metallicity, galaxies in RXJ0142.0+2131 have luminosity-weighted mean ages 0.14 +- 0.07 dex older than the low-redshift sample. We also find that [alpha/Fe] in stellar populations in RXJ0142.0+2131 is 0.14 +- 0.03 greater than at low redshift. All scaling relations are consistent with these estimated offsets. (abridged)
81 - Inger Jorgensen 2004
We present a study of the stellar populations of galaxies in the cluster RXJ0152.7-1357 at a redshift of 0.83. The study is based on new high S/N spectroscopy of 29 cluster members covering the wavelength range 5000-10000A as well as riz photometry o f the cluster. The scaling relations between velocity dispersions, luminosities and Balmer line strengths appear to be in agreement with pure passive evolution of the stellar populations with a formation redshift z=4. However, the strengths of the D4000 indices and the metal indices do not support this interpretation. Compared to z=0, the metal indices (C4668, Fe4383, CN3883, G4300 and CN2) show that at least half of the non-emission line galaxies in RXJ0152.7-1357 have [alpha/Fe] of 0.2 dex higher, and about half of the galaxies have significantly lower metal content. The differences in stellar populations of the galaxies are associated with the location of the galaxies relative to the X-ray emission. The galaxies with weak C4668 and G4300, as well as galaxies with weak [OII] emission, are located in areas of low X-ray luminosity. It is possible that these galaxies are experiencing the effect of the cluster merger taking place in RXJ0152.7-1357 as (short) episodes of star formation, while the galaxies in the cores of the X-ray sub-clumps are unaffected by the merger. The spectroscopy of the RXJ0152.7-1357 galaxies shows for the first time galaxies in a rich cluster at intermediate redshift that cannot evolve passively into the present day galaxy population in rich clusters. Additional physical processes may be at work and we speculate that merging with infalling (disk) galaxies in which stars have formed over an extended period might produce the required reduction in [alpha/Fe]. (abridged)
The WARPS team reviews the properties and history of discovery of ClJ0152.7-1357, an X-ray luminous, rich cluster of galaxies at z=0.833. At L_X = 8 x 10^44 h^(-2) erg/s (0.5-2.0 keV) ClJ0152.7-1357 is the most X-ray luminous cluster known at redshif ts z>0.55. The high X-ray luminosity of the system suggests that massive clusters may begin to form at redshifts considerably greater than unity. This scenario is supported by the high degree of optical and X-ray substructure in ClJ0152.7-1357, which is similarly complex as that of other X-ray selected distant clusters and consistent with the picture of cluster formation by mass infall along large-scale filaments. X-ray emission from ClJ0152.7-1357 was detected already in 1980 with the EINSTEIN IPC. However, because the complex morphology of the emission caused its significance to be underestimated, the corresponding source was not included in the EMSS cluster sample and hence not previously identified. Simulations of the EMSS source detection and selection procedure suggest a general bias of the EMSS against X-ray luminous clusters with pronounced substructure. If highly unrelaxed, merging clusters are common at high redshift, they could create a bias in some samples as the morphological complexity of mergers may cause them to fall below the flux limit of surveys that assume a unimodal spatial source geometry. Conversely, the enhanced X-ray luminosity of mergers might cause them to, temporarily, rise above the flux limit. Either effect could lead to erroneous conclusions about the evolution of the comoving cluster space density. A high fraction of morphologically complex clusters at high redshift would also call into question the validity of cosmological studies that assume that the systems under investigation are virialized.
We report the X-ray detection of two z>1.4 infrared-selected galaxy clusters from the IRAC Shallow Cluster Survey (ISCS). We present new data from the Hubble Space Telescope and the W. M. Keck Observatory that spectroscopically confirm cluster ISCS J 1432.4+3250 at z=1.49, the most distant of 18 confirmed z>1 clusters in the ISCS to date. We also present new spectroscopy for ISCS J1438.1+3414, previously reported at z = 1.41, and measure its dynamical mass. Clusters ISCS J1432.4+3250 and ISCS J1438.1+3414 are detected in 36ks and 143ks Chandra exposures at significances of 5.2 sigma and 9.7 sigma, from which we measure total masses of log(M_{200,Lx}/Msun) = 14.4 +/- 0.2 and 14.35^{+0.14}_{-0.11}, respectively. The consistency of the X-ray and dynamical properties of these high redshift clusters further demonstrates that the ISCS is robustly detecting massive clusters to at least z = 1.5.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا