ترغب بنشر مسار تعليمي؟ اضغط هنا

RXJ0152.7-1357: Stellar populations in an X-ray luminous galaxy cluster at z=0.83

82   0   0.0 ( 0 )
 نشر من قبل Inger Jorgensen
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Inger Jorgensen




اسأل ChatGPT حول البحث

We present a study of the stellar populations of galaxies in the cluster RXJ0152.7-1357 at a redshift of 0.83. The study is based on new high S/N spectroscopy of 29 cluster members covering the wavelength range 5000-10000A as well as riz photometry of the cluster. The scaling relations between velocity dispersions, luminosities and Balmer line strengths appear to be in agreement with pure passive evolution of the stellar populations with a formation redshift z=4. However, the strengths of the D4000 indices and the metal indices do not support this interpretation. Compared to z=0, the metal indices (C4668, Fe4383, CN3883, G4300 and CN2) show that at least half of the non-emission line galaxies in RXJ0152.7-1357 have [alpha/Fe] of 0.2 dex higher, and about half of the galaxies have significantly lower metal content. The differences in stellar populations of the galaxies are associated with the location of the galaxies relative to the X-ray emission. The galaxies with weak C4668 and G4300, as well as galaxies with weak [OII] emission, are located in areas of low X-ray luminosity. It is possible that these galaxies are experiencing the effect of the cluster merger taking place in RXJ0152.7-1357 as (short) episodes of star formation, while the galaxies in the cores of the X-ray sub-clumps are unaffected by the merger. The spectroscopy of the RXJ0152.7-1357 galaxies shows for the first time galaxies in a rich cluster at intermediate redshift that cannot evolve passively into the present day galaxy population in rich clusters. Additional physical processes may be at work and we speculate that merging with infalling (disk) galaxies in which stars have formed over an extended period might produce the required reduction in [alpha/Fe]. (abridged)



قيم البحث

اقرأ أيضاً

85 - B. J. Maughan 2005
We present an analysis of a 50ks XMM observation of the merging galaxy cluster ClJ0152.7-1357 at z=0.83. In addition to the two main subclusters and an infalling group detected in an earlier Chandra observation of the system, XMM detects another grou p of galaxies possibly associated with the cluster. This group may be connected to the northern subcluster by a filament of cool (1.4^{+0.3}_{-0.1}keV) X-ray emitting gas, and lies outside the estimated virial radius of the northern subcluster. The X-ray morphology agrees well with the projected galaxy distribution in new K-band imaging data presented herein. We use detailed spectral and imaging analysis of the X-ray data to probe the dynamics of the system and find evidence that another subcluster or group has recently passed through the northern subcluster. ClJ0152.7-1357 is an extremely dynamically active system with mergers at different stages occurring along two perpendicular merger axes.
We report the discovery of a massive, X-ray-luminous cluster of galaxies at z=1.393, the most distant X-ray-selected cluster found to date. XMMU J2235.3-2557 was serendipitously detected as an extended X-ray source in an archival XMM-Newton observati on of NGC 7314. VLT-FORS2 R and z band snapshot imaging reveals an over-density of red galaxies in both angular and color spaces. The galaxy enhancement is coincident in the sky with the X-ray emission; the cluster red sequence at R-z ~ 2.1 identifies it as a high-redshift candidate. Subsequent VLT-FORS2 multi-object spectroscopy unambiguously confirms the presence of a massive cluster based on 12 concordant redshifts in the interval 1.38<z<1.40. The preliminary cluster velocity dispersion is 762+/-265 km/s. VLT-ISAAC Ks and J band images underscore the rich distribution of red galaxies associated with the cluster. Based on a 45 ks XMM-Newton observation, we find the cluster has an aperture-corrected, unabsorbed X-ray flux of f_X = (3.6 +/- 0.3) x 10^{-14} erg/cm^2/s, a rest-frame X-ray luminosity of L_X = (3.0 +/- 0.2) x 10^{44} h_70^{-2} erg/s (0.5--2.0 keV), and a temperature of kT=6.0 (+2.5, -1.8) keV. Though XMMU J2235.3-2557 is likely the first confirmed z>1 cluster found with XMM-Newton, the relative ease and efficiency of discovery demonstrates that it should be possible to build large samples of z>1 clusters through the joint use of X-ray and large, ground-based telescopes.
Strong gravitational lensing (SL) is a powerful means to map the distribution of dark matter. In this work, we perform a SL analysis of the prominent X-ray cluster RXJ0152.7-1357 (z=0.83, also known as CL 0152.7-1357) in textit{Hubble Space Telescope } images, taken in the framework of the Reionization Lensing Cluster Survey (RELICS). On top of a previously known $z=3.93$ galaxy multiply imaged by RXJ0152.7-1357, for which we identify an additional multiple image, guided by a light-traces-mass approach we identify seven new sets of multiply imaged background sources lensed by this cluster, spanning the redshift range [1.79-3.93]. A total of 25 multiple images are seen over a small area of ~0.4 $arcmin^2$, allowing us to put relatively high-resolution constraints on the inner matter distribution. Although modestly massive, the high degree of substructure together with its very elongated shape make RXJ0152.7-1357 a very efficient lens for its size. This cluster also comprises the third-largest sample of z~6-7 candidates in the RELICS survey. Finally, we present a comparison of our resulting mass distribution and magnification estimates with those from a Lenstool model. These models are made publicly available through the MAST archive.
57 - Jordi Barr 2005
We present a photometric and spectroscopic study of stellar populations in the X-ray-luminous cluster of galaxies RXJ0142.0+2131 at z=0.280. This paper analyses the results of high signal-to-noise spectroscopy, as well as g-, r-, and i-band imaging, using the Gemini Multi-Object Spectrograph on Gemini North. Of 43 spectroscopic targets, we find 30 cluster members over a range in color. Central velocity dispersions and absorption-line strengths for lines in the range 3700A < lambda_rest < 5800A are derived for cluster members, and are compared with a low-redshift sample of cluster galaxies, and single stellar population (SSP) models. We use a combination of these indicators to estimate luminosity-weighted mean ages, metallicities ([M/H]), and alpha-element abundance ratios ([alpha/Fe]). RXJ0142.0+2131 is a relatively poor cluster and lacks galaxies with high central velocity dispersions. Although the red sequence and the Faber-Jackson relation are consistent with pure passive evolution of the early-type population with a formation redshift of z_form = 2, the strengths of the 4000A break and scaling relations between metal line indices and velocity dispersion reject this model with high significance. By inverting SSP models for the Hbeta_G, Mgb, and <Fe> line indices, we calculate that, at a given velocity dispersion and metallicity, galaxies in RXJ0142.0+2131 have luminosity-weighted mean ages 0.14 +- 0.07 dex older than the low-redshift sample. We also find that [alpha/Fe] in stellar populations in RXJ0142.0+2131 is 0.14 +- 0.03 greater than at low redshift. All scaling relations are consistent with these estimated offsets. (abridged)
154 - Joana S. Santos 2011
We report on the discovery of a very distant galaxy cluster serendipitously detected in the archive of the XMM-Newton mission, within the scope of the XMM-Newton Distant Cluster Project (XDCP). XMMUJ0044.0-2033 was detected at a high significance lev el (5sigma) as a compact, but significantly extended source in the X-ray data, with a soft-band flux f(r<40)=(1.5+-0.3)x10^(-14) erg/s/cm2. Optical/NIR follow-up observations confirmed the presence of an overdensity of red galaxies matching the X-ray emission. The cluster was spectroscopically confirmed to be at z=1.579 using ground-based VLT/FORS2 spectroscopy. The analysis of the I-H colour-magnitude diagram shows a sequence of red galaxies with a colour range [3.7 < I-H < 4.6] within 1 from the cluster X-ray emission peak. However, the three spectroscopic members (all with complex morphology) have significantly bluer colours relative to the observed red-sequence. In addition, two of the three cluster members have [OII] emission, indicative of on-going star formation. Using the spectroscopic redshift we estimated the X-ray bolometric luminosity, Lbol = 5.8x10^44 erg/s, implying a massive galaxy cluster. This places XMMU J0044.0-2033 at the forefront of massive distant clusters, closing the gap between lower redshift systems and recently discovered proto- and low-mass clusters at z >1.6.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا