ﻻ يوجد ملخص باللغة العربية
Stationary solutions of 5D supergravity with U(1) isometry can be efficiently studied by dimensional reduction to three dimensions, where they reduce to solutions to a locally supersymmetric non-linear sigma model. We generalize this procedure to 5D gauged supergravity, and identify the corresponding gauging in 3D. We pay particular attention to the case where the Killing spinor is non constant along the fibration, which results, even for ungauged supergravity in 5D, in an additional gauging in 3D, without introducing any extra potential. We further study SU(2)times U(1) symmetric solutions, which correspond to geodesic motion on the sigma model (with potential in the gauged case). We identify and study the algebra of BPS constraints relevant for the Breckenridge-Myers-Peet-Vafa black hole, the Gutowski-Reall black hole and several other BPS solutions, and obtain the corresponding radial wave functions in the semi-classical approximation.
We study non-local non-linear sigma models in arbitrary dimension, focusing on the scale invariant limit in which the scalar fields naturally have scaling dimension zero, so that the free propagator is logarithmic. The classical action is a bi-local
Kerr/CFT correspondence has been recently applied to various types of 5D extremal rotating black holes. A common feature of all such examples is the existence of two chiral CFT duals corresponding to the U(1) symmetries of the near horizon geometry.
We study a two-dimensional theory of gravity coupled to matter that is relevant to describe holographic properties of black holes with a single rotational parameter in five dimensions (with or without cosmological constant). We focus on the near-hori
There exists a certain argument that in even dimensions, scale invariant quantum field theories are conformal invariant. We may try to extend the argument in $2n + epsilon$ dimensions, but the naive extension has a small loophole, which indeed shows
We apply the dressing method on the Non Linear Sigma Model (NLSM), which describes the propagation of strings on $mathbb{R}times mathrm{S}^2$, for an arbitrary seed. We obtain a formal solution of the corresponding auxiliary system, which is expresse