ترغب بنشر مسار تعليمي؟ اضغط هنا

5D Extremal Rotating Black Holes and CFT duals

147   0   0.0 ( 0 )
 نشر من قبل Hesam Soltanpanahi
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Kerr/CFT correspondence has been recently applied to various types of 5D extremal rotating black holes. A common feature of all such examples is the existence of two chiral CFT duals corresponding to the U(1) symmetries of the near horizon geometry. In this paper, by studying the moduli space of the near horizon metric of five dimensional extremal black holes which are asymptotically flat or AdS, we realize an SL(2,Z) modular group which is a symmetry of the near horizon geometry. We show that there is a lattice of chiral CFT duals corresponding to the moduli points identified under the action of the modular group. The microscopic entropy corresponding to all such CFTs are equivalent and are in agreement with the Bekenstein-Hawking entropy.



قيم البحث

اقرأ أيضاً

90 - Marco Astorino 2016
The near horizon geometry of the rotating C-metric, describing accelerating Kerr-Newman black holes, is analysed. It is shown that, at extremality, even though not it is isomorphic to the extremal Kerr-Newman, it remains a warped and twisted product of $AdS_2 times S^2$. Therefore the methods of the Kerr/CFT correspondence can successfully be applied to build a CFT dual model, whose entropy reproduce, through the Cardy formula, the Beckenstein-Hawking entropy of the accelerating black hole. The mass of accelerating Kerr-Newman black hole, which fulfil the first law of thermodynamics, is presented. Further generalisation in presence of an external Melvin-like magnetic field, used to regularise the conical singularity characteristic of the C-metrics, shows that the Kerr/CFT correspondence can be applied also for the accelerating and magnetised extremal black holes.
We study a two-dimensional theory of gravity coupled to matter that is relevant to describe holographic properties of black holes with a single rotational parameter in five dimensions (with or without cosmological constant). We focus on the near-hori zon geometry of the near-extremal black hole, where the effective theory reduces to Jackiw-Teitelboim (JT) gravity coupled to a massive scalar field. We compute the corrections to correlation functions due to cubic interactions present in this theory. A novel feature is that these corrections do not have a definite sign: for AdS$_5$ black holes the sign depends on the mass of the extremal solution. We discuss possible interpretations of these corrections from a gravitational and holographic perspective. We also quantify the imprint of the JT sector on the UV region, i.e. how these degrees of freedom, characteristic for the near-horizon region, influence the asymptotically far region of the black hole. This gives an interesting insight on how to interpret the IR modes in the context of their UV completion, which depends on the environment that contains the black hole.
We study rotating black holes in five dimensions using the nAdS$_2$/nCFT$_1$ correspondence. A consistent truncation of pure Einstein gravity (with a cosmological constant) in five dimensions to two dimensions gives a generalization of the Jackiw-Tei telboim theory that has two scalar fields: a dilaton and a squashing parameter that breaks spherical symmetry. The interplay between these two scalar fields is non trivial and leads to interesting new features. We study the holographic description of this theory and apply the results to the thermodynamics of the rotating black hole from a two dimensional point of view. This setup challenges notions of universality that have been advanced based on simpler models: we find that the mass gap of Kerr-AdS$_5$ corresponds to an undetermined effective coupling in the nAdS$_2$/nCFT$_1$ theory which depends on ultraviolet data.
We study possible CFT duals of supersymmetric five dimensional black rings in the presence of supersymmetric higher derivative corrections to the N=2 supergravity action. A Virasoro algebra associated to an asymptotic symmetry group of solutions is d efined by using the Kerr/CFT approach. We find the central charge and compute the microscopic entropy which is in precise agreement with the macroscopic entropy. Although apparently related to a different aspect of the near-horizon geometry and a different Virasoro algebra, we find that the c-extremization method leads to the same central charge and microscopic entropy computed in the Kerr/CFT approach. The relationship between these two point of view is clarified by relating the geometry to a self-dual orbifold of AdS3.
104 - M. Cvetic , C.N. Pope , A. Saha 2020
The extremal Reissner-Nordstrom black hole admits a conformal inversion symmetry, in which the metric is mapped into itself under an inversion of the radial coordinate combined with a conformal rescaling. In the rotating generalisation, Couch and Tor rence showed that the Kerr-Newman metric no longer exhibits a conformal inversion symmetry, but the radial equation arising in the separation of the massless Klein-Gordon equation admits a mode-dependent inversion symmetry, where the radius of inversion depends upon the energy and azimuthal angular momentum of the mode. It was more recently shown that the static 4-charge extremal black holes of STU supergravity admit a generalisation of the conformal inversion symmetry, in which the conformally-inverted metric is a member of the same 4-charge black hole family but with transformed charges. In this paper we study further generalisations of these inversion symmetries, within the general class of extremal STU supergravity black holes. For the rotating black holes, where again the massless Klein-Gordon equation is separable, we show that examples with four electric charges exhibit a generalisation of the Couch-Torrence symmetry of the radial equation. Now, as in the conformal inversion of the static specialisations, the inversion of the radial equation maps it to the radial equation for a rotating black hole with transformed electric charges. We also study the inversion transformations for the general case of extremal BPS STU black holes carrying eight charges (4 electric plus 4 magnetic), and argue that analogous generalisations of the inversion symmetries exist both for the static and the rotating cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا