ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotating 5D Black Holes: Interactions and deformations near extremality

89   0   0.0 ( 0 )
 نشر من قبل Chiara Toldo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a two-dimensional theory of gravity coupled to matter that is relevant to describe holographic properties of black holes with a single rotational parameter in five dimensions (with or without cosmological constant). We focus on the near-horizon geometry of the near-extremal black hole, where the effective theory reduces to Jackiw-Teitelboim (JT) gravity coupled to a massive scalar field. We compute the corrections to correlation functions due to cubic interactions present in this theory. A novel feature is that these corrections do not have a definite sign: for AdS$_5$ black holes the sign depends on the mass of the extremal solution. We discuss possible interpretations of these corrections from a gravitational and holographic perspective. We also quantify the imprint of the JT sector on the UV region, i.e. how these degrees of freedom, characteristic for the near-horizon region, influence the asymptotically far region of the black hole. This gives an interesting insight on how to interpret the IR modes in the context of their UV completion, which depends on the environment that contains the black hole.

قيم البحث

اقرأ أيضاً

Kerr/CFT correspondence has been recently applied to various types of 5D extremal rotating black holes. A common feature of all such examples is the existence of two chiral CFT duals corresponding to the U(1) symmetries of the near horizon geometry. In this paper, by studying the moduli space of the near horizon metric of five dimensional extremal black holes which are asymptotically flat or AdS, we realize an SL(2,Z) modular group which is a symmetry of the near horizon geometry. We show that there is a lattice of chiral CFT duals corresponding to the moduli points identified under the action of the modular group. The microscopic entropy corresponding to all such CFTs are equivalent and are in agreement with the Bekenstein-Hawking entropy.
We investigate the asymptotic supersymmetry group of the near horizon region of the BMPV black holes, which are the rotating BPS black holes in five dimensions. When considering only bosonic fluctuations, we show that there exist consistent boundary conditions and the corresponding asymptotic symmetry group is generated by a chiral Virasoro algebra with the vanishing central charge. After turning on fermionic fluctuations with the boundary conditions, we also show that the asymptotic supersymmetry group is generated by a chiral super-Virasoro algebra with the vanishing central extension. The super-Virasoro algebra is originated in the AdS2 isometry supergroup of the near horizon solution.
Within the framework of the complexity equals action and complexity equals volume conjectures, we study the properties of holographic complexity for rotating black holes. We focus on a class of odd-dimensional equal-spinning black holes for which con siderable simplification occurs. We study the complexity of formation, uncovering a direct connection between complexity of formation and thermodynamic volume for large black holes. We consider also the growth-rate of complexity, finding that at late-times the rate of growth approaches a constant, but that Lloyds bound is generically violated.
60 - G. Alencar , C.R. Muniz 2018
In this paper we find analytical expressions for thermodynamic quantities of scalar (tensor) and vector unparticle static black holes. We also find rotating solutions to these systems and analyse their thermodynamics. First we consider the static cas e with a spherically symmetric source for both the vector and scalar (tensor) unparticles. We obtain thus analytical expressions to the principal thermodynamic quantities: Hawking temperature, entropy, heat capacity and free energy. For the scalar (tensor) case we find that the black hole presents a residual value for the entropy when its radius goes to zero but the other thermodynamic quantities give, for any horizon radius, a thermodynamically unstable behavior similar to the standard black hole. For the vector case we find a richer structure in the region in which the horizon radius is less than the characteristic length of the unparticle theory. We identify a phase transition and a region where the black hole can be thermodynamically stable. Following, we show that the mentioned modifications in the standard gravity are formally similar to those ones present in the black holes with quintessence. With this we also show, notwithstanding, that the unparticles cannot be a source of quintessence. By using this similarity we find two different rotating solutions to the unparticle black holes based on works by Ghosh and Toshmatov {it et al}. For both cases we compute the Hawking temperature and in the ungravity dominated regime we find, as in the static cases, a fractalization of the event horizon. For the Gosh-like solution the fractal dimension depends on the polar angle and on the rotation of the source. For the Toshmatov-like one it is equal to the static case and therefore the fractalization is not dependent on the rotation of the source.
We study rotating black holes in five dimensions using the nAdS$_2$/nCFT$_1$ correspondence. A consistent truncation of pure Einstein gravity (with a cosmological constant) in five dimensions to two dimensions gives a generalization of the Jackiw-Tei telboim theory that has two scalar fields: a dilaton and a squashing parameter that breaks spherical symmetry. The interplay between these two scalar fields is non trivial and leads to interesting new features. We study the holographic description of this theory and apply the results to the thermodynamics of the rotating black hole from a two dimensional point of view. This setup challenges notions of universality that have been advanced based on simpler models: we find that the mass gap of Kerr-AdS$_5$ corresponds to an undetermined effective coupling in the nAdS$_2$/nCFT$_1$ theory which depends on ultraviolet data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا