ﻻ يوجد ملخص باللغة العربية
The formation of deeply-bound antikaonic $K^-/bar{K}^0$ nuclear states by nuclear ($K^-$, $N$) reactions is investigated theoretically within a distorted-wave impulse approximation (DWIA), considering the isospin properties of the Fermi-averaged $K^-+ N to N + bar{K}$ elementary amplitudes. We calculate the formation cross sections of the deeply-bound $bar{K}$ states by the ($K^-$, $N$) reactions on the nuclear targets, $^{12}$C and $^{28}$Si, at incident $K^-$ lab momentum $p_{K^-}$ = 1.0 GeV/c and $theta_{rm lab} = 0^{circ}$, introducing a complex effective nucleon number $N_{rm eff}$ for unstable bound states in the DWIA. The results show that the deeply-bound $bar{K}$ states can be populated dominantly by the ($K^-$, $n$) reaction via the total isoscalar $Delta T=0$ transition owing to the isospin nature of the $K^-+ N to N + bar{K}$ amplitudes, and that the cross sections described by ${rm Re}N_{rm eff}$ and ${rm Arg}N_{rm eff}$ enable to deduce the structure of the $bar{K}$ nuclear states; the calculated inclusive nucleon spectra for a deep $bar{K}$-nucleus potential do not show distinct peak structure in the bound region. The few-body $bar{K}otimes [NN]$ and $bar{K}otimes [NNN]$ states formed in ($K^-$, $N$) reactions on $s$-shell nuclear targets, $^3$He, $^3$H and $^4$He, are also discussed.
The formation of a deeply-bound $K^-pp$ state by the $^3$He(in-flight $K^-$,$n$) reaction is investigated theoretically in the distorted-wave impulse approximation using the Greens function method. The expected inclusive and semi-exclusive spectra at
We review recent claims of the existence of deeply bound kaonic states in nuclei. Also we study in details the (K-,p) reaction on C12 with 1 GeV/c momentum kaon beam, based on which a deep kaon nucleus optical potential was claimed in [1]. In our Mon
The formation of a deeply-bound $K^- pp$ state with $I=1/2$, $J^pi=0^-$ by the $^3$He(in-flight $K^-$, $n$) reaction is theoretically investigated in a distorted-wave impulse approximation using the Greens function method. The expected inclusive and
The isospin breaking effects due to the Coulomb interaction in weakly-bound nuclei are studied using the Gamow Shell Model, a complex-energy configuration interaction approach which simultaneously takes into account many-body correlations between val
Recently, we have applied for the first time the angular momentum and isospin projected nuclear density functional theory to calculate the isospin-symmetry breaking (ISB) corrections to the superallowed beta-decay. With the calculated set of the ISB