ﻻ يوجد ملخص باللغة العربية
Recently, we have applied for the first time the angular momentum and isospin projected nuclear density functional theory to calculate the isospin-symmetry breaking (ISB) corrections to the superallowed beta-decay. With the calculated set of the ISB corrections we found |V_{ud}|=0.97447(23) for the leading element of the Cabibbo-Kobayashi-Maskawa matrix. This is in nice agreement with both the recent result of Towner and Hardy [Phys. Rev. {bf C77}, 025501 (2008)] and the central value deduced from the neutron decay. In this work we extend our calculations of the ISB corrections covering all superallowed transitions A,I^pi=0^+,T=1,T_z rightarrow A,I^pi=0^+,T=1,T_z+1 with T_z =-1,0 and A ranging from 10 to 74.
We report new shell-model calculations of the isospin-symmetry-breaking correction to superallowed nuclear beta decay. The most important improvement is the inclusion of core orbitals, which are demonstrated to have a significant impact on the mismat
Background: The superallowed beta-decay rates provide stringent constraints on physics beyond the Standard Model of particle physics. To extract crucial information about the electroweak force, small isospin-breaking corrections to the Fermi matrix e
We investigate the radial-overlap part of the isospin-symmetry breaking correction to superallowed $0^+to 0^+$-decay using the shell-model approach similar to that of Refs. [1, 2]. The 8 sd-shell emitters with masses between $A=22$ and $A=38$ have be
Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the $N=Z$ line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density function
Superallowed $0^+ to 0^+$ nuclear beta decay provides a direct measure of the weak vector coupling constant, $GV$. We survey current world data on the nine accurately determined transitions of this type, which range from the decay of $^{10}$C to that