ترغب بنشر مسار تعليمي؟ اضغط هنا

Deeply-bound $K^- pp$ state in the $^3$He(in-flight $K^-$, $n$) spectrum and its moving pole near the $pi Sigma N$ threshold

431   0   0.0 ( 0 )
 نشر من قبل Takahisa Koike
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The formation of a deeply-bound $K^- pp$ state with $I=1/2$, $J^pi=0^-$ by the $^3$He(in-flight $K^-$, $n$) reaction is theoretically investigated in a distorted-wave impulse approximation using the Greens function method. The expected inclusive and semi-exclusive spectra at $p_{K^-} = 1.0$ GeV/c and $theta_{rm lab} = 0^{circ}$ are calculated for the forthcoming J-PARC E15 experiment. We demonstrate these spectra with several types of phenomenological $K^-$-``$pp$ optical potentials $U^{rm opt}(E)$ which have an energy-dependent imaginary part multiplied by a phase space suppression factor, fitting to recent theoretical predictions or experimental candidates of the $K^-pp$ bound state. The results show that a cusp-like peak at the $pi Sigma N$ threshold is an unique signal for the $K^-pp$ bound state in the spectrum including the [$K^-pp$] $to$ $Y + N$ decay process from the two-nucleon $K^-$ absorption, as well as a distinct peak of the $K^-pp$ bound state. The shape of the spectrum is explained by a trajectory of a moving pole of the $K^-pp$ bound state in the complex energy plane. The importance of the spectrum with [$K^-pp$] $to$ $Y + N$ from the two-nucleon $K^-$ absorption is emphasized in order to extract clear evidence of the $K^-pp$ bound state.

قيم البحث

اقرأ أيضاً

470 - T. Koike , T. Harada 2007
The formation of a deeply-bound $K^-pp$ state by the $^3$He(in-flight $K^-$,$n$) reaction is investigated theoretically in the distorted-wave impulse approximation using the Greens function method. The expected inclusive and semi-exclusive spectra at $p_{K^-}$ = 1.0 GeV/c and $theta_n = 0^{circ}$ are calculated for the forthcoming J-PARC E15 experiment. We employ optical potentials between the $K^-$ and ``$pp$ core-nucleus, and demonstrate systematically the dependence of the spectral shape on $V_0$ and $W_0$, which are the real and imaginary parts of the strength for the optical potential, respectively. The necessary condition to observe a distinct peak of the $K^-pp$ bound state with $I=1/2$, $J^pi=0^-$ in the spectrum turns out to be that the value of $V_0$ is deeper than $sim-100$ MeV and $W_0$ shallower than $sim-100$ MeV, of which the strength parameters come up to recent theoretical predictions.
To search for an S= -1 di-baryonic state which decays to $Lambda p$, the $ {rm{}^3He}(K^-,Lambda p)n_{missing}$ reaction was studied at 1.0 GeV/$c$. Unobserved neutrons were kinematically identified from the missing mass $M_X$ of the $ {rm{}^3He}(K^- ,Lambda p)X$ reaction in order to have a large acceptance for the $Lambda pn$ final state. The observed $Lambda p n$ events, distributed widely over the kinematically allowed region of the Dalitz plot, establish that the major component comes from a three nucleon absorption process. A concentration of events at a specific neutron kinetic energy was observed in a region of low momentum transfer to the $Lambda p$. To account for the observed peak structure, the simplest S-wave pole was assumed to exist in the reaction channel, having Breit-Wigner form in energy and with a Gaussian form-factor. A minimum $chi^2$ method was applied to deduce its mass $M_X =$ 2355 $ ^{+ 6}_{ - 8}$ (stat.) $ pm 12$ (syst.) MeV/c$^2$, and decay-width $Gamma_X = $ 110 $ ^{+ 19}_{ - 17}$ (stat.) $ pm 27$ (syst.) MeV/c$^2$, respectively. The form factor parameter $Q_X sim$ 400 MeV/$c$ implies that the range of interaction is about 0.5
An experiment to search for the $K^-pp$ bound state was performed via the in-flight $^3$He($K^-,n)$ reaction using 5.3 $times$ $10^9$ kaons at 1 GeV/$c$ at the J-PARC hadron experimental facility. In the semi-inclusive neutron missing-mass spectrum a t $theta_{n}^{lab}=0^circ$, no significant peak was observed in the region corresponding to $K^-pp$ binding energy larger than 80 MeV, where a bump structure has been reported in the $Lambda p$ final state in different reactions. Assuming the state to be isotropically decaying into $Lambda p$, mass-dependent upper limits on the production cross section were determined to be 30--180, 70--250, and 100--270 $mu$b/sr, for the natural widths of 20, 60, and 100 MeV, respectively, at 95% confidence level.
We theoretically analyze the $K^{-} {}^{3} text{He} to Lambda p n$ reaction for the $bar{K} N N$ bound-state search in the J-PARC E15 experiment. We find that, by detecting a fast and forward neutron in the final state, an almost on-shell $bar{K}$ is guaranteed, which is essential to make a bound state with two nucleons from ${}^{3} text{He}$. Then, this almost on-shell $bar{K}$ can bring a signal of the $bar{K} N N$ bound state in the $Lambda p$ invariant-mass spectrum, although it inevitably brings a kinematic peak above the $bar{K} N N$ threshold as well. As a consequence, we predict two peaks across the $bar{K} N N$ threshold in the spectrum: the lower peak coming from the $bar{K} N N$ bound state, and the higher one originating from the kinematics.
The cross sections for the reactions pp -> p Lambda^0K^+ and pn -> n Lambda^0K^+ are calculated near threshold of the final states. The theoretical ratio of the cross sections R = sigma(pn -> n Lambda^0K^+)/ sigma(pp ->pLambda^0K^+) = 3 shows the e nhancement of the pn interaction with respect to the pp interaction near threshold of the strangeness production N Lambda^0K^+. Such an enhancement is caused by the contribution of the np interaction in the isospin-singlet state, which is stronger than the $pn$ interaction in the isospin-triplet state. For the confirmation of this result we calculate the cross sections for the reactions pp -> pp pi^0, pi^0 p -> Lambda^0 K^+ and pi^-p -> Lambda^0 K^0 near threshold of the final states. The theoretical cross sections agree well with the experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا