ﻻ يوجد ملخص باللغة العربية
In this paper, we present the equivalent medium theory by using the linear response theory. It is found that, under the condition of the linear response, a series of different media with different refractive indices $n_{i}(omega)$ and lengths $d_{i}$ can be equivalent to an effective medium with the volume-averaged refractive index $frac{1}{D}sum_{i=1}^{N}n_{i}(omega)d_{i}$ and the total length $D=sum_{i=1i}^{N}d_{i}$,where $N$ is the number of different media. Based on this equivalent theory, it is a simple but very useful method to design the effective medium with any desirable dispersion properties. As an example, we present a proposal to obtain the enhancement or reduction of the refractive index without absorption and the large dispersion without obvious absorption by assembling different linear dispersive gain and absorptive media.
Using detailed simulations we investigate the magnetic response of metamaterials consisting of pairs of parallel slabs or combinations of slabs with wires (including the fishnet design) as the length-scale of the structures is reduced from mm to nm.
Fluctuation dissipation theorems connect the linear response of a physical system to a perturbation to the steady-state correlation functions. Until now, most of these theorems have been derived for finite-dimensional systems. However, many relevant
A foundational question in relativistic fluid mechanics concerns the properties of the hydrodynamic gradient expansion at large orders. We establish the precise conditions under which this gradient expansion diverges for a broad class of microscopic
In this paper, we study the interactions of electromagnetic waves with a non-dispersive dynamic medium that is temporally dependent. Electromagnetic fields under material time-modulation conserve their momentum but not their energy. We assume a time-
We present an analytic perturbation theory which extends the paraxial approximation for a common cylindrically symmetric stable optical resonator and incorporates the differential, polarization-dependent reflectivity of a Bragg mirror. The degeneracy