ﻻ يوجد ملخص باللغة العربية
We present an analytic perturbation theory which extends the paraxial approximation for a common cylindrically symmetric stable optical resonator and incorporates the differential, polarization-dependent reflectivity of a Bragg mirror. The degeneracy of Laguerre-Gauss modes with distinct orbital angular momentum (OAM) and polarization, but identical transverse order N, will become observably lifted at sufficiently small size and high finesse. The resulting paraxial eigenmodes possess two distinct OAM components, the fractional composition subtly depending on mirror structure.
The dynamical response of an optical Fabry-Perot cavity is investigated experimentally. We observe oscillations in the transmitted and reflected light intensity if the frequency of the incoupled light field is rapidly changed. In addition, the decay
We demonstrate the spin to orbital angular momentum transfer in the nonlinear mixing of structured light beams. A vector vortex is coupled to a circularly polarized Gaussian beam in noncollinear second harmonic generation under type-II phase match. T
Wireless communications, radio astronomy and other radio science applications are predominantly implemented with techniques built on top of the electromagnetic linear momentum (Poynting vector) physical layer. As a supplement and/or alternative to th
While nanoscale color generations have been studied for years, high performance transmission structural colors, simultaneously equipped with large gamut, high resolution, low loss and optical multiplexing abilities, still remain as a hanging issue. H
We demonstrate the fabrication of ultra-low-loss, all-fiber Fabry-Perot cavities containing a nanofiber section, optimized for cavity quantum electrodynamics. By continuously monitoring the finesse and fiber radius during fabrication of a nanofiber b