ﻻ يوجد ملخص باللغة العربية
The first low radio frequency (<1.4 GHz) detection of the outburst of the recurrent nova RS Ophiuchi is presented in this letter. Radio emission was detected at 0.61 GHz on day 20 with a flux density of ~48 mJy and at 0.325 GHz on day 38 with a flux density of ~ 44 mJy. This is in contrast with the 1985 outburst when it was not detected at 0.327 GHz even on day 66. The emission at low radio frequencies is clearly non-thermal and is well-explained by a synchrotron spectrum of index alpha ~ -0.8 (S propto nu^alpha) suffering foreground absorption due to the pre-existing, ionized, warm, clumpy red giant wind. The absence of low frequency radio emission in 1985 and the earlier turn-on of the radio flux in the current outburst are interpreted as being due to higher foreground absorption in 1985 compared to that in 2006, suggesting that the overlying wind densities in 2006 are only ~30% of those in 1985.
We present infrared spectroscopy of the recurrent nova RS Ophiuchi, obtained 11.81, 20.75 and 55.71 days following its 2006 eruption. The spectra are dominated by hydrogen recombination lines, together with HeI, OI and OII lines; the electron tempera
Following the Swift X-ray observations of the 2006 outburst of the recurrent nova RS Ophiuchi, we developed hydrodynamical models of mass ejection from which the forward shock velocities were used to estimate the ejecta mass and velocity. In order to
Optical spectra of the 2006 outburst of RS Ophiuchi beginning one day after discovery to over a year after the outburst are presented here. The spectral evolution is found to be similar to that in previous outbursts. The early phase spectra are domin
Near-infrared spectra are presented for the recent 2006 outburst of the recurrent nova RS Ophiuchi (RS Oph).We report the rare detection of an infrared shock wave as the nova ejecta plows into the pre-existing wind of the secondary in the RS Oph syst
Swift X-ray observations of the ~60 day super-soft phase of the recurrent nova RS Ophiuchi 2006 show the progress of nuclear burning on the white dwarf in exquisite detail. First seen 26 days after the optical outburst, this phase started with extrem