ﻻ يوجد ملخص باللغة العربية
(Abridged) Classification schemes for YSOs are based on evaluating the degree of dissipation of the surrounding envelope, whose main effects are the extinction of the optical radiation from the central YSO and re-emission in the far-infrared. Since extinction is a property of column density along the line of sight, the presence of a protoplanetary disk may lead to a misclassification when the system is viewed edge-on. We performed radiative transfer calculations, using the axysimmetric 3D radiative transfer codes RADMC and RADICAL, to show the effects of different geometries on the main indicators of YSO evolutionary stage, like the slope of the flux between 2 and 24mum, the bolometric temperature and the optical depth of silicates and ices. We show that for systems viewed at intermediate angles the classical indicators of evolution accurately trace the envelope column density, and they all agree with each other. On the other hand, edge-on system are misclassified for inclinations larger than ~65deg. In particular, silicate emission, typical of pre-main sequence stars with disks, turns into absorption when the disk column density reaches 1e22cm-2, corresponding e.g. to a 5e-3 Msun flaring disk viewed at 64deg. A similar effect is noticed in all the other classification indicators studied alpha, Tbol, and the H2O and CO2 ices absorption strengths. This misclassification has a big impact on the nature of the flat-spectrum sources (alpha ~0), whose number can be explained by simple geometrical arguments without invoking evolution. A reliable classification scheme using a minimal number of observations is constituted by observations of the mm-flux with both a single dish and an interferometer.
Interferometer observations of millimeter-continuum (OVRO) and single-dish observations of HCO+ and H13CO+ J=1-0, 3-2, and 4-3 (JCMT, IRAM 30m) are presented of nine embedded low-mass young stellar objects (YSOs) in Taurus. All nine objects are detec
We present spectroscopic observations of a sample of 15 embedded young stellar objects (YSOs) in the Large Magellanic Cloud (LMC). These observations were obtained with the Spitzer Infrared Spectrograph (IRS) as part of the SAGE-Spec Legacy program.
We present the comparison of the three most important ice constituents (water, CO and CO2) in the envelopes of massive Young Stellar Objects (YSOs), in environments of different metallicities: the Galaxy, the Large Magellanic Cloud (LMC) and, for the
We present infrared observations of four young stellar objects using the Palomar Testbed Interferometer (PTI). For three of the sources, T Tau, MWC 147 and SU Aur, the 2.2 micron emission is resolved at PTIs nominal fringe spacing of 4 milliarcsec (m
The study of the chemical evolution of gas and dust from pre-stellar dense cores to circumstellar disks around young stars forms an essential part of understanding star- and planet formation. Throughout the collapse- and protostellar phases, simple a