ﻻ يوجد ملخص باللغة العربية
We present infrared observations of four young stellar objects using the Palomar Testbed Interferometer (PTI). For three of the sources, T Tau, MWC 147 and SU Aur, the 2.2 micron emission is resolved at PTIs nominal fringe spacing of 4 milliarcsec (mas), while the emission region of AB Aur is over-resolved on this scale. We fit the observations with simple circumstellar material distributions and compare our data to the predictions of accretion disk models inferred from spectral energy distributions. We find that the infrared emission region is tenths of AU in size for T Tau and SU Aur and ~1 AU for MWC 147.
We discuss VLTI AMBER and MIDI interferometry in addition to single-dish Subaru observations of massive young stellar objects. The observations probe linear size scales between 10 to 1000 AU for the average distance of our sources.
The very inner structure of massive young stellar objects (YSOs) is difficult to trace. With conventional observational methods we identify structures still several hundreds of AU in size. However, the (proto-)stellar growth takes place at the innerm
Optical and near-infrared variability is a well-known property of young stellar objects. However, a growing number of recent studies claim that a considerable fraction of them also exhibit mid-infrared flux changes. With the aim of studying and inter
The study of the chemical evolution of gas and dust from pre-stellar dense cores to circumstellar disks around young stars forms an essential part of understanding star- and planet formation. Throughout the collapse- and protostellar phases, simple a
The results of a near-infrared (J H K LP) imaging linear polarimetry survey of 20 young stellar objects (YSOs) in rho Ophiuchi are presented. The majority of the sources are unresolved, with K-band polarizations, P_K < 6 per cent. Several objects are