ﻻ يوجد ملخص باللغة العربية
We present the comparison of the three most important ice constituents (water, CO and CO2) in the envelopes of massive Young Stellar Objects (YSOs), in environments of different metallicities: the Galaxy, the Large Magellanic Cloud (LMC) and, for the first time, the Small Magellanic Cloud (SMC). We present observations of water, CO and CO2 ice in 4 SMC and 3 LMC YSOs (obtained with Spitzer-IRS and VLT/ISAAC). While water and CO2 ice are detected in all Magellanic YSOs, CO ice is not detected in the SMC objects. Both CO and CO2 ice abundances are enhanced in the LMC when compared to high-luminosity Galactic YSOs. Based on the fact that both species appear to be enhanced in a consistent way, this effect is unlikely to be the result of enhanced CO2 production in hotter YSO envelopes as previously thought. Instead we propose that this results from a reduced water column density in the envelopes of LMC YSOs, a direct consequence of both the stronger UV radiation field and the reduced dust-to-gas ratio at lower metallicity. In the SMC the environmental conditions are harsher, and we observe a reduction in CO2 column density. Furthermore, the low gas-phase CO density and higher dust temperature in YSO envelopes in the SMC seem to inhibit CO freeze-out. The scenario we propose can be tested with further observations.
We present spectroscopic observations of a sample of 15 embedded young stellar objects (YSOs) in the Large Magellanic Cloud (LMC). These observations were obtained with the Spitzer Infrared Spectrograph (IRS) as part of the SAGE-Spec Legacy program.
Recent radio astronomical observations have revealed that HC$_{5}$N, the second shortest cyanopolyyne (HC$_{2n+1}$N), is abundant around some massive young stellar objects (MYSOs), which is not predicted by classical carbon-chain chemistry. For examp
Episodic accretion-driven outbursts are an extreme manifestation of accretion variability. It has been proposed that the development of gravitational instabilities in the proto-circumstellar medium of massive young stellar objects (MYSOs) can lead to
We discuss VLTI AMBER and MIDI interferometry in addition to single-dish Subaru observations of massive young stellar objects. The observations probe linear size scales between 10 to 1000 AU for the average distance of our sources.
The VVV survey has allowed for an unprecedented number of multi-epoch observations of the southern Galactic plane. In a recent paper,13 massive young stellar objects(MYSOs) have already been identified within the highly variable(Delta Ks > 1 mag) YSO