ﻻ يوجد ملخص باللغة العربية
Three-body and four-body interactions have been directly measured in a colloidal system comprised of three (or four) charged colloidal particles. Two of the particles have been confined by means of a scanned laser tweezers to a line-shaped optical trap where they diffused due to thermal fluctuations. By means of an additional focused optical trap a third particle has been approached and attractive three-body interactions have been observed. These observations are in qualitative agreement with additionally performed nonlinear Poissson-Boltzmann calculations. Two configurations of four particles have been studied experimentally as well and in both cases a repulsive four-body interaction term has been observed.
We study the fluctuation-induced Casimir interactions in colloidal suspensions, especially between colloids immersed in a binary liquid close to its critical demixing point. To simulate these systems, we present a highly efficient cluster Monte Carlo
We show that the contributions of three-quasiparticle interactions to normal Fermi systems at low energies and temperatures are suppressed by n_q/n compared to two-body interactions, where n_q is the density of excited or added quasiparticles and n i
In the effort to design and to construct a quantum computer, several leading proposals make use of spin-based qubits. These designs generally assume that spins undergo pairwise interactions. We point out that, when several spins are engaged mutually
We report a molecular dynamics simulation study of a model gel whose interaction potential is obtained by modifying the three body Stillinger-Weber model potential for silicon. The modification reduces the average coordination number, and suppresses
Large-scale molecular dynamics simulations are performed to predict the structural and thermodynamic properties of liquid krypton using a potential energy function based on the two-body potential of Aziz and Slaman plus the triple-dipole Axilrod-Tell