ﻻ يوجد ملخص باللغة العربية
In the effort to design and to construct a quantum computer, several leading proposals make use of spin-based qubits. These designs generally assume that spins undergo pairwise interactions. We point out that, when several spins are engaged mutually in pairwise interactions, the quantitative strengths of the interactions can change and qualitatively new terms can arise in the Hamiltonian, including four-body interactions. In parameter regimes of experimental interest, these coherent effects are large enough to interfere with computation, and may require new error correction or avoidance techniques.
Three-body and four-body interactions have been directly measured in a colloidal system comprised of three (or four) charged colloidal particles. Two of the particles have been confined by means of a scanned laser tweezers to a line-shaped optical tr
Quantum phase transitions occur at zero temperature, when the ground state of a Hamiltonian undergoes a qualitative change as a function of a control parameter. We consider a particularly interesting system with competing one-, two- and three-body in
We propose a three-qubit setup for the implementation of a variety of quantum thermal machines where all heat fluxes and work production can be controlled. An important configuration that can be designed is that of an absorption refrigerator, extract
We show that quantum absorption refrigerators, which has traditionally been studied as of three qubits, each of which is connected to a thermal reservoir, can also be constructed by using three qubits and two thermal baths, where two of the qubits, i
We study the dynamics of a few-quantum-particle cloud in the presence of two- and three-body interactions in weakly disordered one-dimensional lattices. The interaction is dramatically enhancing the Anderson localization length $xi_1$ of noninteracti