ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic versus Newtonian orbit model: the Relativistic Motion Integrator (RMI) software. Illustration with the LISA mission

49   0   0.0 ( 0 )
 نشر من قبل Sophie Pireaux Dr
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Relativistic Motion Integrator (RMI) consists in integrating numerically the EXACT relativistic equations of motion, for a given metric (corresponding to a gravitational field at first post-Newtonian order or higher), instead of Newtonian equations plus relativistic corrections. The aim of the present paper is to validate the method, and to illustrate how RMI can be used for space missions to produce relativistic ephemerides of test-bodies (or satellites). Indeed, nowadays, relativistic effects have to be taken into account, and comparing a RMI model with a classical keplerian one helps to quantify such effects. LISA is a relevant example to use RMI. A precise orbit model for the LISA spacecraft is needed not only for the sake of satellite ephemerides but also to compute the photon flight time in laser links between spacecraft, required in LISA data pre-processing in order to reach the gravitational wave detection level. Relativistic effects in LISA orbit model needed to be considered and quantified. Using RMI, we show that the numerical classical model for LISA orbits in the gravitational field of a non-rotating spherical Sun without planets can be wrong, with respect to the numerical relativisitic version of the same model, by as much as about ten kilometers in radial distance during a year and up to about 60 kilometers in along track distance after a year... with consequences on estimated photon flight times. We validated RMI numerical results with a 1PN analytical developpement.

قيم البحث

اقرأ أيضاً

Although general relativistic cosmological solutions, even in the presence of pressure, can be mimicked by using neo-Newtonian hydrodynamics, it is not clear whether there exists the same Newtonian correspondence for spherical static configurations. General relativity solutions for stars are known as the Tolman-Oppenheimer-Volkoff (TOV) equations. On the other hand, the Newtonian description does not take into account the total pressure effects and therefore can not be used in strong field regimes. We discuss how to incorporate pressure in the stellar equilibrium equations within the neo-Newtonian framework. We compare the Newtonian, neo-Newtonian and the full relativistic theory by solving the equilibrium equations for both three approaches and calculating the mass-radius diagrams for some simple neutron stars equation of state.
We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of the perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.
74 - S. Vitale 2005
We report on the development of the LISA Technology Package (LTP) experiment that will fly on board the LISA Pathfinder mission of the European Space Agency in 2008. We first summarize the science rationale of the experiment aimed at showing the oper ational feasibility of the so called Transverse-Traceless coordinate frame within the accuracy needed for LISA. We then show briefly the basic features of the instrument and we finally discuss its projected sensitivity and the extrapolation of its results to LISA.
The LTP (LISA Testflight Package), to be flown aboard the ESA / NASA LISA Pathfinder mission, aims to demonstrate drag-free control for LISA test masses with acceleration noise below 30 fm/s^2/Hz^1/2 from 1-30 mHz. This paper describes the LTP measur ement of random, position independent forces acting on the test masses. In addition to putting an overall upper limit for all source of random force noise, LTP will measure the conversion of several key disturbances into acceleration noise and thus allow a more detailed characterization of the drag-free performance to be expected for LISA.
This paper shows a novel calculation of the mean square displacement of a classical Brownian particle in a relativistic thermal bath. The result is compared with the expressions obtained by other authors. Also, the thermodynamic properties of a non-d egenerate simple relativistic gas are reviewed in terms of a treatment performed in velocity space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا