ﻻ يوجد ملخص باللغة العربية
The LTP (LISA Testflight Package), to be flown aboard the ESA / NASA LISA Pathfinder mission, aims to demonstrate drag-free control for LISA test masses with acceleration noise below 30 fm/s^2/Hz^1/2 from 1-30 mHz. This paper describes the LTP measurement of random, position independent forces acting on the test masses. In addition to putting an overall upper limit for all source of random force noise, LTP will measure the conversion of several key disturbances into acceleration noise and thus allow a more detailed characterization of the drag-free performance to be expected for LISA.
We report on the development of the LISA Technology Package (LTP) experiment that will fly on board the LISA Pathfinder mission of the European Space Agency in 2008. We first summarize the science rationale of the experiment aimed at showing the oper
We have developed a torsion pendulum facility for LISA gravitational reference sensor ground testing that allows us to put significant upper limits on residual stray forces exerted by LISA-like position sensors on a representative test mass and to ch
The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the eLISA concept. The data analysis team has de
The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about
Since the 2017 Nobel Prize in Physics was awarded for the observation of gravitational waves, it is fair to say that the epoch of gravitational wave astronomy (GWs) has begun. However, a number of interesting sources of GWs can only be observed from